Skip to main content

Advertisement

Log in

IL-4 Release from a Biomimetic Scaffold for the Temporally Controlled Modulation of Macrophage Response

  • Emerging Trends in Biomaterials Research
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The interaction of immune cells with biomaterials has been identified as a possible predictor of either the success or the failure of the implant. Among immune cells, macrophages have been found to contribute to both of these possible scenarios, based on their polarization profile. This proof-of-concept study aimed to investigate if it was possible to affect the response of macrophages to biomaterials, by the release of anti-inflammatory mediators. Towards this end, a collagen scaffold, integrated with poly(lactic-co-glycolic acid)—multistage silicon particles (MSV) composite microspheres (PLGA-MSV) releasing IL-4 was developed (PLGA-MSV/IL-4). Macrophages’ response to the scaffold was evaluated, both in vitro with rat bone-marrow derived macrophages, and in vivo in a rat subcutaneous pouch model. In vitro experiments revealed an overexpression of anti-inflammatory associated genes (Il-10, Mrc1, Arg1) at as soon as 48 h. The analysis of the cells that infiltrated the scaffold, revealed a prevalence of CD206+ macrophages at 24 h. Our strategy demonstrated that it is possible to tune the in vivo early response to biomaterials by the release of an anti-inflammatory cytokine, and that could contribute to accelerate the resolution of the inflammatory phase, benefiting a vast range of tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

BMDM:

Bone marrow-derived macrophages

MSV:

Multistage porous silicon particle vectors

PLGA:

Poly(dl-lactide-co-glycolide) acid

PLGA-MSV:

PLGA-porous silicon particles composite microspheres

PLGA-MSV/IL-4:

PLGA-MSV releasing IL-4

References

  1. Anderson, J. M., A. Rodriguez, and D. T. Chang. Foreign body reaction to biomaterials. Semin. Immunol. 20:86–100, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Antonios, J. K., Z. Yao, C. Li, A. J. Rao, and S. B. Goodman. Macrophage polarization in response to wear particles in vitro. Cell. Mol. Immunol. 10:471–482, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Badylak, S. F., D. O. Freytes, and T. W. Gilbert. Reprint of: extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 23(Supplement):S17–S26, 2015.

    Article  PubMed  Google Scholar 

  4. Badylak, S. F., J. E. Valentin, A. K. Ravindra, G. P. McCabe, and A. M. Stewart-Akers. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng. Part A 14:1835–1842, 2008.

    Article  CAS  PubMed  Google Scholar 

  5. Brown, B. N., and S. F. Badylak. Expanded applications, shifting paradigms and an improved understanding of host-biomaterial interactions. Acta Biomater. 9:4948–4955, 2013.

    Article  CAS  PubMed  Google Scholar 

  6. Brown, B. N., B. D. Ratner, S. B. Goodman, S. Amar, and S. F. Badylak. Macrophage polarization: an opportunity for improved outcomes in biomaterials and regenerative medicine. Biomaterials 33:3792–3802, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carragee, E. J., E. L. Hurwitz, and B. K. Weiner. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11:471–491, 2011.

    Article  PubMed  Google Scholar 

  8. Chiappini, C., E. Tasciotti, J. R. Fakhoury, D. Fine, L. Pullan, Y. C. Wang, L. Fu, X. Liu, and M. Ferrari. Tailored porous silicon microparticles: fabrication and properties. Chemphyschem 11:1029–1035, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Corradetti, B., F. Taraballi, S. Powell, D. Sung, S. Minardi, M. Ferrari, B. K. Weiner, and E. Tasciotti. Osteoprogenitor cells from bone marrow and cortical bone: understanding how the environment affects their fate. Stem Cells Dev. 24:1112–1123, 2014.

    Article  Google Scholar 

  10. Davies, L. C., S. J. Jenkins, J. E. Allen, and P. R. Taylor. Tissue-resident macrophages. Nat. Immunol. 14:986–995, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doshi, N., and S. Mitragotri. Macrophages recognize size and shape of their targets. PLoS One 5:e10051, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Edwards, J. P., X. Zhang, K. A. Frauwirth, and D. M. Mosser. Biochemical and functional characterization of three activated macrophage populations. J. Leukoc. Biol. 80:1298–1307, 2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Franz, S., S. Rammelt, D. Scharnweber, and J. C. Simon. Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:6692–6709, 2011.

    Article  CAS  PubMed  Google Scholar 

  14. Gordon, S. Alternative activation of macrophages. Nat. Rev. immunol. 3:23–35, 2003.

    Article  CAS  PubMed  Google Scholar 

  15. Hashimoto, D., A. Chow, C. Noizat, P. Teo, M. B. Beasley, M. Leboeuf, C. D. Becker, P. See, J. Price, D. Lucas, M. Greter, A. Mortha, S. W. Boyer, E. C. Forsberg, M. Tanaka, N. van Rooijen, A. García-Sastre, E. R. Stanley, F. Ginhoux, P. S. Frenette, and M. Merad. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:792–804, 2013.

    Article  CAS  PubMed  Google Scholar 

  16. Mantovani, A., S. K. Biswas, M. R. Galdiero, A. Sica, and M. Locati. Macrophage plasticity and polarization in tissue repair and remodelling. J. Pathol. 229:176–185, 2013.

    Article  CAS  PubMed  Google Scholar 

  17. Mantovani, A., A. Sica, S. Sozzani, P. Allavena, A. Vecchi, and M. Locati. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25:677–686, 2004.

    Article  CAS  PubMed  Google Scholar 

  18. Minardi S., B. Corradetti, F. Taraballi, M. Sandri, J. O. Martinez, S. T. Powell, A. Tampieri, B. K. Weiner and E. Tasciotti. Biomimetic concealing of PLGA microspheres in a 3D scaffold to prevent macrophage uptake. Small 2016. doi:10.1002/smll.201503484.

  19. Minardi, S., B. Corradetti, F. Taraballi, M. Sandri, J. Van Eps, F. J. Cabrera, B. K. Weiner, A. Tampieri, and E. Tasciotti. Evaluation of the osteoinductive potential of a bio-inspired scaffold mimicking the osteogenic niche for bone augmentation. Biomaterials 62:128–137, 2015.

    Article  CAS  PubMed  Google Scholar 

  20. Minardi, S., L. Pandolfi, F. Taraballi, E. De Rosa, I. K. Yazdi, X. Liu, M. Ferrari, and E. Tasciotti. PLGA-mesoporous silicon microspheres for the in vivo controlled temporospatial delivery of proteins. ACS Appl. Mater. Interfaces 7:16364–16373, 2015.

    Article  CAS  PubMed  Google Scholar 

  21. Minardi, S., M. Sandri, J. O. Martinez, I. K. Yazdi, X. Liu, M. Ferrari, B. K. Weiner, A. Tampieri, and E. Tasciotti. Multiscale patterning of a biomimetic scaffold integrated with composite microspheres. Small 10:3943–3953, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mosser, D. M., and J. P. Edwards. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8:958–969, 2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Murray, P. J., and T. A. Wynn. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 11:723–737, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ortega-Gómez, A., M. Perretti, and O. Soehnlein. Resolution of inflammation: an integrated view. EMBO Mol. Med. 5:661–674, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pajarinen, J., Y. Tamaki, J. K. Antonios, T. H. Lin, T. Sato, Z. Yao, M. Takagi, Y. T. Konttinen, and S. B. Goodman. Modulation of mouse macrophage polarization in vitro using IL-4 delivery by osmotic pumps. J. Biomed. Mater. Res. Part A 103:1339–1345, 2015.

    Article  Google Scholar 

  26. Sica, A., and A. Mantovani. Macrophage plasticity and polarization: in vivo veritas. J. Clin. Invest. 122:787–795, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Spiller, K. L., S. Nassiri, C. E. Witherel, R. R. Anfang, J. Ng, K. R. Nakazawa, T. Yu, and G. Vunjak-Novakovic. Sequential delivery of immunomodulatory cytokines to facilitate the M1-to-M2 transition of macrophages and enhance vascularization of bone scaffolds. Biomaterials 37:194–207, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sridharan, R., A. R. Cameron, D. J. Kelly, C. J. Kearney, and F. J. O’Brien. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater. Today 18:313–325, 2015.

    Article  CAS  Google Scholar 

  29. Sridharan, R., A. R. Cameron, D. J. Kelly, C. J. Kearney, and F. J. O’Brien. Biomaterial based modulation of macrophage polarization: a review and suggested design principles. Mater. Today 18:313–325, 2015.

    Article  CAS  Google Scholar 

  30. Taraballi, F., B. Corradetti, S. Minardi, S. Powel, F. Cabrera, J. L. Van Eps, B. K. Weiner, and E. Tasciotti. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages. J. Tissue Eng. 2016. doi:10.1177/2041731415624667.

  31. Tasciotti, E., X. Liu, R. Bhavane, K. Plant, A. D. Leonard, B. K. Price, M. M. C. Cheng, P. Decuzzi, J. M. Tour, F. Robertson, and M. Ferrari. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nat. Nanotech. 3(3):151–157, 2008.

    Article  CAS  Google Scholar 

  32. Wischke, C., and S. P. Schwendeman. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 364:298–327, 2008.

    Article  CAS  PubMed  Google Scholar 

  33. Xu, L., F. Yang, R. Lin, C. Han, J. Liu, and Z. Ding. Induction of M2 polarization in primary culture liver macrophages from rats with acute pancreatitis. PloS One 9(9):e108014, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This study was supported by the Brown Foundation (Project ID, 18130011), the Cullen Foundation (Project ID, 18130014). The work was supported by funds from the Houston Methodist Research Institute. Partial funds were acquired from the Ernest Cockrell Jr. Presidential Distinguished Chair (M.F.). We thank Dr. J. Gu, director of the HMRI Microscopy-SEM/AFM core, Dr. K. Cui, director of the HMRI ACTM core and Dr. D. Haviland, director of the HMRI Flow Cytometry core. We thank Dr. Xin Wang for her help troubleshooting the gene expression study.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ennio Tasciotti.

Additional information

Associate Editor Michael S. Detamore oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (TIF 37842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minardi, S., Corradetti, B., Taraballi, F. et al. IL-4 Release from a Biomimetic Scaffold for the Temporally Controlled Modulation of Macrophage Response. Ann Biomed Eng 44, 2008–2019 (2016). https://doi.org/10.1007/s10439-016-1580-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1580-z

Keywords

Navigation