Skip to main content
Log in

A Predictive Model of High Shear Thrombus Growth

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

A Correction to this article was published on 04 November 2019

This article has been updated

Abstract

The ability to predict the timescale of thrombotic occlusion in stenotic vessels may improve patient risk assessment for thrombotic events. In blood contacting devices, thrombosis predictions can lead to improved designs to minimize thrombotic risks. We have developed and validated a model of high shear thrombosis based on empirical correlations between thrombus growth and shear rate. A mathematical model was developed to predict the growth of thrombus based on the hemodynamic shear rate. The model predicts thrombus deposition based on initial geometric and fluid mechanic conditions, which are updated throughout the simulation to reflect the changing lumen dimensions. The model was validated by comparing predictions against actual thrombus growth in six separate in vitro experiments: stenotic glass capillary tubes (diameter = 345 µm) at three shear rates, the PFA-100® system, two microfluidic channel dimensions (heights = 300 and 82 µm), and a stenotic aortic graft (diameter = 5.5 mm). Comparison of the predicted occlusion times to experimental results shows excellent agreement. The model is also applied to a clinical angiography image to illustrate the time course of thrombosis in a stenotic carotid artery after plaque cap rupture. Our model can accurately predict thrombotic occlusion time over a wide range of hemodynamic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

  • 04 November 2019

    This erratum is to correct the heading of column 2 (titled ���b���) in Table��1, which was missing proper units. The heading for that column was revised to include proper units, reading ���b (�� 10���6 s)���.

  • 04 November 2019

    This erratum is to correct the heading of column 2 (titled ���b���) in Table��1, which was missing proper units. The heading for that column was revised to include proper units, reading ���b (�� 10���6 s)���.

Abbreviations

a, c :

Fitting constants (µm/min)

b, d :

Fitting constants (s)

D :

Lumen diameter

J :

Thrombus growth rate (µm/min)

J max :

Maximum thrombus growth rate (µm/min)

L :

Stenosis length

r :

Lumen radius

S :

Wall shear rate (s−1)

\(S_{J\hbox{max} }\) :

Shear rate corresponding to maximum thrombus growth rate (s−1)

t :

Time

t lag :

Lag time

\(t_{\text{Occ}}\) :

Occlusion time

vWF:

von Willebrand factor

z :

The axial direction

References

  1. Antaki, J. F., M. R. Ricci, J. E. Verkaik, S. T. Snyder, T. M. Maul, et al. PediaFlow™ Maglev ventricular assist device: a prescriptive design approach. Cardiovasc. Eng. Technol. 1:104–121, 2010.

    Article  Google Scholar 

  2. Badimon, L., J. J. Badimon, V. T. Turitto, S. Vallabhajosula, and V. Fuster. Platelet thrombus formation on collagen type I. A model of deep vessel injury. Influence of blood rheology, von Willebrand factor, and blood coagulation. Circulation 78:1431–1442, 1988.

    Article  CAS  PubMed  Google Scholar 

  3. Bark, D. L. The Hemodynamics during Thrombosis and Impact on Thrombus Growth. Atlanta, GA: Mech. Eng., Georgia Institute of Technology, 2010.

    Google Scholar 

  4. Bark, D. L., and D. N. Ku. Wall shear over high degree stenoses pertinent to atherothrombosis. J. Biomech. 43:2970–2977, 2010.

    Article  PubMed  Google Scholar 

  5. Bark, D. L., A. N. Para, and D. N. Ku. Correlation of thrombosis growth rate to pathological wall shear rate during platelet accumulation. Biotechnol. Bioeng. 109:2642–2650, 2012.

    Article  CAS  PubMed  Google Scholar 

  6. Barstad, R. M., H. Roald, Y. Cui, V. Turitto, and K. Sakariassen. A perfusion chamber developed to investigate thombus formation and shear profiles in flowing native human blood at the apex of a well-defined stenosis. Atertio. Thromb. Vasc. Biol. 14:1984–1991, 1994.

    Article  CAS  Google Scholar 

  7. Bernardo, A., A. L. Bergeron, C. W. Sun, P. Guchhait, M. A. Cruz, et al. Von Willebrand factor present in fibrillar collagen enhances platelet adhesion to collagen and collagen-induced platelet aggregation. J. Thromb. Haemost. 2:660–669, 2004.

    Article  CAS  PubMed  Google Scholar 

  8. Bland, J. M., and D. G. Altman. Statistics notes: calculating correlation coefficients with repeated observations: Part 1—correlation within subjects. BMJ 310:466, 1995.

    Google Scholar 

  9. Casa, L. D. C., D. H. Deaton, and D. N. Ku. Role of high shear rate in thrombosis. J. Vasc. Surg. 61:1068–1080, 2015.

    Article  PubMed  Google Scholar 

  10. Casa, L. D. C., and D. N. Ku. Geometric design of microfluidic chambers: platelet adhesion versus accumulation. Biomed. Microdevices 16:115–126, 2014.

    Article  PubMed  Google Scholar 

  11. Casa, L. D. C., and D. N. Ku. High shear thrombus formation under pulsatile and steady flow. Cardiovasc. Eng. Technol. 5:154–163, 2014.

    Article  Google Scholar 

  12. Cito, S., M. D. Mazzeo, and L. Badimon. A review of macroscopic thrombus modeling methods. Thromb. Res. 131:116–124, 2013.

    Article  CAS  PubMed  Google Scholar 

  13. DuMouchel, W. H., and F. L. O’Brien, Integrating a Robust Option into a Multiple Regression Computing Environment., Computer Science and Statistics: Proceedings of the 21st Symposium on the Interface., American Statistical Association, Alexandria, VA, 1989.

  14. Epstein, F. H., J. Lefkovits, E. F. Plow, and E. J. Topol. Mechanisms of disease: platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. New Engl. J. Med. 332:1553–1559, 1995.

    Article  Google Scholar 

  15. Escudero, C., M. Santos, J. Buján, M. Fuente, N. G. Honduvilla, et al. Optical aggregometry versus the PFA-100: experimental studies in pigs treated with propofol. Platelets 12:133–137, 2001.

    Article  CAS  PubMed  Google Scholar 

  16. Flamm, M. H., T. V. Colace, M. S. Chatterjee, H. Jing, S. Zhou, et al. Multiscale prediction of patient-specific platelet function under flow. Blood 120:190–198, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hellums, J. 1993 Whitaker Lecture: biorheology in thrombosis research. Ann. Biomed. Eng. 22:445–455, 1994.

    Article  CAS  PubMed  Google Scholar 

  18. Holland, P. W., and R. E. Welsch. Robust regression using iteratively reweighted least-squares. Commun. Stat. 6:813–827, 1977.

    Article  Google Scholar 

  19. Huck, V., M. F. Schneider, C. Gorzelanny, and S. W. Schneider. The various states of von Willebrand factor and their function in physiology and pathophysiology. Thromb. Haemost. 111:598–609, 2014.

    Article  CAS  PubMed  Google Scholar 

  20. Hunter, J. V., and J. K. Chin. Carotid Angiography. In: Vascular Disease: Surgical & Interventional Therapy, edited by D. E. Strandness Jr, and Van Breda. New York: Churchill Livingstone, 1994, pp. 273–287.

    Google Scholar 

  21. Ku, D. N., and C. J. Flannery. Development of a flow-through system to create occluding thrombus. Biorheology 44:273–284, 2007.

    PubMed  Google Scholar 

  22. Leuser, C., S. Schlottmann, R. Siekmann, M. Heidt, A. Moritz, et al. Use of the platelet function analyser PFA-100™ in juvenile pigs. Comp. Clin. Pathol. 21:761–767, 2011.

    Article  Google Scholar 

  23. Li, M. Microfluidic System for Thrombosis Under Multiple Shear Rates and Platelet Therapies. Atlanta, GA: Biomed. Eng, Georgia Institute of Technology, 2013.

    Google Scholar 

  24. Li, M., N. A. Hotaling, D. N. Ku, and C. R. Forest. Microfluidic thrombosis under multiple shear rates and antiplatelet therapy doses. PLoS One 9:e82493, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, M., D. Ku, and C. Forest. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 12:1355–1362, 2012.

    Article  CAS  PubMed  Google Scholar 

  26. Nesbitt, W. S., E. Westein, F. J. Tovar-Lopez, E. Tolouei, A. Mitchell, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat. Med. 15:665–673, 2009.

    Article  CAS  PubMed  Google Scholar 

  27. Nobili, M., J. Sheriff, U. Morbiducci, A. Redaelli, and D. Bluestein. Platelet activation due to hemodynamic shear stresses: damage accumulation model and comparison to in vitro measurements. ASAIO J. 54:64–72, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Para, A. N., and D. N. Ku. A low-volume, single pass in vitro system of high shear thrombosis in a stenosis. Thromb. Res. 131:418–424, 2013.

    Article  CAS  PubMed  Google Scholar 

  29. Reneman, R. S., T. Arts, and A. P. G. Hoeks. Wall shear stress—an important determinant of endothelial cell function and structure—in the arterial system in vivo. J. Vasc. Res. 43:251–269, 2006.

    Article  PubMed  Google Scholar 

  30. Rowley, J. W., A. V. Finn, P. A. French, L. K. Jennings, D. Bluestein, et al. Cardiovascular devices and platelet interactions: understanding the role of injury, flow, and cellular responses. Circ. Cardiovasc. Interv. 5:296–304, 2010.

    Article  Google Scholar 

  31. Ruggeri, Z. M. Von Willebrand factor: looking back and looking forward. Thromb. Haemost. 98:55–62, 2007.

    CAS  PubMed  Google Scholar 

  32. Savage, B., E. Saldivar, and Z. M. Ruggeri. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 84:289–297, 1996.

    Article  CAS  PubMed  Google Scholar 

  33. Siemens, PFA-100® System: Getting Started Guide, 2008.

  34. Strandness, D. E., and A. van Breda. Vascular Diseases: Surgical and Interventional Therapy. London: Churchill Livingstone, 1993.

    Google Scholar 

  35. Strony, J., A. Beaudoin, D. Brands, and B. Adelman. Analysis of shear stress and hemodynamic factors in a model of coronary artery stenosis and thrombosis. Am. J. Physiol. 265:H1787–H1796, 1993.

    CAS  PubMed  Google Scholar 

  36. Tomaiuolo, M., T. J. Stalker, J. D. Welsh, S. L. Diamond, T. Sinno, et al. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood 124:1816–1824, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang, W., and M. R. King. Multiscale modeling of platelet adhesion and thrombus growth. Ann. Biomed. Eng. 40:2345–2354, 2012.

    Article  PubMed  Google Scholar 

  38. Xu, Z., M. Kamocka, M. Alber, and E. D. Rosen. Computational approaches to studying thrombus development. Atertio. Thromb. Vasc. Biol. 31:500–505, 2011.

    Article  Google Scholar 

  39. Xu, Z., J. Lioi, J. Mu, M. M. Kamocka, X. Liu, et al. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98:1723–1732, 2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yun, B., J. Wu, H. Simon, S. SArgunon, F. Sotiropoulos, et al. A numerical investigation of blood damage in the hinge area of aortic bileaflet mechanical heart valves during the leakage phase. Ann. Biomed. Eng. 40:1468–1485, 2012.

    Article  PubMed  Google Scholar 

  41. Zydney, A., and C. Colton. Augmented solute transport in the shear flow of a concentrated suspension. Physicochem. Hydrodyn. 10:77–96, 1988.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the assistance of and Peter Costandi (Endologix, Inc.) and Susan Hastings in conducting the aortic graft experiments. This work was supported by a grant from the Center for Pediatric Innovation, Georgia Institute of Technology, Children’s Healthcare of Atlanta, and Emory University; Lawrence P. Huang Chair Funds, Georgia Institute of Technology; and the John and Mary Brock Discovery Fund. LDCC was supported by an American Heart Association Pre-Doctoral Fellowship (14PRE18080005). Aortic graft experiments were funded by Endologix, Inc. DNK and LDCC acted as paid consultants for Endologix, Inc. We declare that we have no other conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David N. Ku.

Additional information

Associate Editor Umberto Morbiducci oversaw the review of this article.

Marmar Mehrabadi and Lauren D. C. Casa contributed equally to this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (Docx 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrabadi, M., Casa, L.D.C., Aidun, C.K. et al. A Predictive Model of High Shear Thrombus Growth. Ann Biomed Eng 44, 2339–2350 (2016). https://doi.org/10.1007/s10439-016-1550-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-016-1550-5

Keywords

Navigation