Skip to main content
Log in

Quantitative Imaging Assessment of an Alternative Approach to Surgical Mitral Valve Leaflet Resection: An Acute Porcine Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This study reports the initial in vivo use of a combined radiofrequency ablation and cryo-anchoring (RFC) catheter as an alternative to surgical mitral valve (MV) leaflet resection. Radiofrequency ablation thermally shrinks enlarged collagenous tissues, providing an alternative to leaflet resection, and cryo-anchoring provides reversible attachment of a catheter to freely mobile MV leaflets. Excised porcine MVs (n = 9) were tested in a left heart flow simulator to establish treatment efficacy criteria. Resected leaflet area was quantified by tracking markers on the leaflet surface, and leaflet length reductions were directly measured on echocardiography. Leaflet area decreased by 38 ± 2.7%, and leaflet length decreased by 9.2 ± 1.8% following RFC catheter treatment. The RFC catheter was then tested acutely in healthy pigs (n = 5) under epicardial echocardiographic guidance, open-chest without cardiopulmonary bypass, using mid-ventricular free wall access. Leaflet length was quantified using echocardiography. Quantitative assessment of MV leaflet length revealed that leaflet resection was successful in 4 of 5 pigs, with a leaflet length reduction of 13.3 ± 4.6%. Histological, mechanical, and gross pathological findings also confirmed that RFC catheter treatment was efficacious. The RFC catheter significantly reduces MV leaflet size in an acute animal model, providing a possible percutaneous alternative to surgical leaflet resection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

MR:

Mitral regurgitation

MV:

Mitral valve

RF:

Radiofrequency ablation

RFC:

Radiofrequency ablation and cryo-anchoring

PM:

Papillary muscle

AL:

Anterior leaflet

PL:

Posterior leaflet

References

  1. Borgarelli, M., and J. Haggstrom. Canine degenerative myxomatous mitral valve disease: natural history, clinical presentation and therapy. Vet. Clin. North Am. Small Anim. Pract. 40:651–663, 2010.

    Article  PubMed  Google Scholar 

  2. Boronyak, S. M., and W. D. Merryman. Development of a simultaneous cryo-anchoring and radiofrequency ablation catheter for percutaneous treatment of mitral valve prolapse. Ann. Biomed. Eng. 40:1971–1981, 2012.

    Article  PubMed  Google Scholar 

  3. Boronyak, S. M., and W. D. Merryman. The once and future state of percutaneous mitral valve repair. Future Cardiol. 8:779–793, 2012.

    Article  CAS  PubMed  Google Scholar 

  4. Boronyak, S. M., and W. D. Merryman. In vitro assessment of a combined radiofrequency ablation and cryo-anchoring catheter for treatment of mitral valve prolapse. J. Biomech. 47:973–980, 2014.

    Article  PubMed  Google Scholar 

  5. Chiam, P. T., and C. E. Ruiz. Percutaneous transcatheter mitral valve repair: a classification of the technology. JACC Cardiovasc. Interv. 4:1–13, 2011.

    Article  PubMed  Google Scholar 

  6. David, T. E. Outcomes of mitral valve repair for mitral regurgitation due to degenerative disease. Semin. Thorac. Cardiovasc. Surg. 19:116–120, 2007.

    Article  PubMed  Google Scholar 

  7. Fedak, P. W., P. M. McCarthy, and R. O. Bonow. Evolving concepts and technologies in mitral valve repair. Circulation 117:963–974, 2008.

    Article  PubMed  Google Scholar 

  8. Flameng, W., B. Meuris, P. Herijgers, and M. C. Herregods. Durability of mitral valve repair in Barlow disease versus fibroelastic deficiency. J. Thorac. Cardiovasc. Surg. 135:274–282, 2008.

    Article  PubMed  Google Scholar 

  9. Franco, K. L., and E. D. Verrier. Advanced Therapy in Cardiac Surgery. Hamilton: B.C. Decker, p. 111, 1999.

    Google Scholar 

  10. Harris, J. L., P. B. Wells, and J. D. Humphrey. Altered mechanical behavior of epicardium due to isothermal heating under biaxial isotonic loads. J. Biomech. Eng. 125:381–388, 2003.

    Article  CAS  PubMed  Google Scholar 

  11. Huang, S. K. S., and M. A. Wood. Catheter Ablation of Cardiac Arrhythmias. Philadelphia: Elsevier, 2006.

    Google Scholar 

  12. Humphrey, J. D. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs. New York: Springer, p. xvi, 2002.

    Book  Google Scholar 

  13. Mirabel, M., B. Iung, G. Baron, D. Messika-Zeitoun, D. Detaint, J. L. Vanoverschelde, E. G. Butchart, P. Ravaud, and A. Vahanian. What are the characteristics of patients with severe, symptomatic, mitral regurgitation who are denied surgery? Eur. Heart J. 28:1358–1365, 2007.

    Article  PubMed  Google Scholar 

  14. Rabbah, J. P., B. Chism, A. Siefert, N. Saikrishnan, E. Veledar, V. H. Thourani, and A. P. Yoganathan. Effects of targeted papillary muscle relocation on mitral leaflet tenting and coaptation. Ann. Thorac. Surg. 95:621–628, 2013.

    Article  PubMed  Google Scholar 

  15. Thomsen, S., J. A. Pearce, and W. F. Cheong. Changes in birefringence as markers of thermal-damage in tissues. IEEE Trans. Biomed. Eng. 36:1174–1179, 1989.

    Article  CAS  PubMed  Google Scholar 

  16. Victal, O. A., J. R. Teerlink, E. Gaxiola, A. W. Wallace, S. Najar, D. H. Camacho, A. Gutierrez, G. Herrera, G. Zuniga, F. Mercado-Rios, and M. B. Ratcliffe. Left ventricular volume reduction by radiofrequency heating of chronic myocardial infarction in patients with congestive heart failure. Circulation 105:1317–1322, 2002.

    Article  PubMed  Google Scholar 

  17. Williams, J. L., Y. Toyoda, T. Ota, D. Gutkin, W. Katz, M. Zenati, and D. Schwartzman. Feasibility of myxomatous mitral valve repair using direct leaflet and chordal radiofrequency ablation. J. Interv. Cardiol. 21:547–554, 2008.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. Michael Miga for use of the ultrasound machine in the ex vivo experiments.

Funding Sources

This work was funded by the Wallace H. Coulter Foundation and the American Heart Association (13PRE16340018).

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. David Merryman.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Video 1

Cryo-anchoring shown in multiple leaflet locations on an excised MV, demonstrated in the left heart flow simulator. Also shown is an excised MV in the prolapse model and after treatment with the RFC catheter. MV leaflet size is significantly reduced following RFC catheter treatment. Supplementary material 1 (MOV 4823 kb)

Video 2

Echocardiographic examination of excised MV leaflets at baseline, in the prolapse model, and after treatment with the RFC catheter. Supplementary material 2 (MOV 1018 kb)

Cryo-anchoring demonstrated on the AL and PL, separately, in the in vivo study. Note the free motion of the leaflets not targeted for cryo-anchoring. Supplementary material 3 (MOV 4245 kb)

AL motion before and after treatment with the RFC catheter. Also shown are the corresponding leaflet length measurements. Supplementary material 4 (MOV 4598 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boronyak, S.M., Fredi, J.L., Young, M.N. et al. Quantitative Imaging Assessment of an Alternative Approach to Surgical Mitral Valve Leaflet Resection: An Acute Porcine Study. Ann Biomed Eng 44, 2240–2250 (2016). https://doi.org/10.1007/s10439-015-1494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1494-1

Keywords

Navigation