Skip to main content
Log in

Low Shear Stress Inhibited Endothelial Cell Autophagy Through TET2 Downregulation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Low shear stress plays a crucial role in the initiation and progression of atherosclerotic lesions. However, the detailed mechanisms of these processes remain unclear. In this study, the effect of low shear stress on endothelial cell autophagy and its potential mechanism were investigated. Results showed autophagy dysfunction and ten-eleven translocation 2 (TET2) protein downregulation during atherosclerotic lesion progression. Autophagic markers BECLIN 1 and LC3II/LC3I under low shear stress (5 dyne/cm2) obviously decreased compared with those under physiological shear stress (15 dyne/cm2), whereas autophagic substrate p62 increased. TET2 expression was also downregulated under low shear stress. Endothelial cell autophagy was improved with TET2 overexpression but was impaired by TET2 siRNA treatment. Moreover, TET2 overexpression upregulated the expression of endothelial cell nitric oxide synthase (eNOS) and downregulated the expression of endothelin-1 (ET-1). TET2 siRNA further attenuated eNOS expression and stimulated ET-1 expression. Overall, the results showed that low shear stress downregulated endothelial cell autophagy by impaired TET2 expression, which might contribute to the atherogenic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Bharath, L. P., R. Mueller, Y. Li, T. Ruan, D. Kunz, R. Goodrich, T. Mills, L. Deeter, and A. Sargsyan. Anandh Babu PV, Graham TE, Symons JD. Impairment of autophagy in endothelial cells prevents shear-stress-induced increases in nitric oxide bioavailability. Can J Physiol Pharmacol. 92(7):605–612, 2014.

    Article  CAS  PubMed  Google Scholar 

  2. Chatzizisis, Y. S., A. U. Coskun, M. Jonas, E. R. Edelman, C. L. Feldman, and P. H. Stone. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 49(25):2379–2393, 2007.

    Article  CAS  PubMed  Google Scholar 

  3. Chatzizisis, Y. S., M. Jonas, A. U. Coskun, R. Beigel, B. V. Stone, C. Maynard, R. G. Gerrity, W. Daley, C. Rogers, E. R. Edelman, C. L. Feldman, and P. H. Stone. Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of lowendothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117(8):993–1002, 2008.

    Article  PubMed  Google Scholar 

  4. Dawlaty, M. M., A. Breiling, T. Le, M. I. Barrasa, G. Raddatz, Q. Gao, B. E. Powell, A. W. Cheng, K. F. Faull, F. Lyko, and R. Jaenisch. Loss of Tet enzymes compromises proper differentiation of embryonic stem cells. Dev Cell. 29(1):102–111, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. De Meyer, G. R., M. O. Grootaert, C. F. Michiels, A. Kurdi, D. M. Schrijvers, and W. Martinet. Autophagy in vascular disease. Circ. Res. 116(3):468–479, 2015.

    Article  PubMed  Google Scholar 

  6. Feng, J., N. Shao, K. E. Szulwach, V. Vialou, J. Huynh, C. Zhong, T. Le, D. Ferguson, M. E. Cahill, Y. Li, J. W. Koo, E. Ribeiro, B. Labonte, B. M. Laitman, D. Estey, V. Stockman, P. Kennedy, T. Couroussé, I. Mensah, G. Turecki, K. F. Faull, G. L. Ming, H. Song, G. Fan, P. Casaccia, L. Shen, P. Jin, and E. J. Nestler. Role of Tet1 and 5-hydroxymethylcytosine in cocaine action. Nat. Neurosci. 18(4):536–544, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Green, J., A. Yurdagul, Jr, M. C. McInnis, P. Albert, and A. W. Orr. Flow patterns regulate hyperglycemia-induced subendothelial matrix remodeling during early atherogenesis. Atherosclerosis. 232(2):277–284, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grimmel, M., C. Backhaus, and T. Proikas-Cezanne. WIPI-mediated autophagy and longevity. Cells. 4(2):202–217, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Guo, F., X. Li, J. Peng, Y. Tang, Q. Yang, L. Liu, Z. Wang, Z. Jiang, M. Xiao, C. Ni, R. Chen, D. Wei, and G. X. Wang. Autophagy regulates vascular endothelial cell eNOS and ET-1 expression induced by laminar shearstress in an ex vivo perfused system. Ann. Biomed. Eng. 42(9):1978–1988, 2014.

    Article  PubMed  Google Scholar 

  10. Harvald, E. B., A. S. Olsen, and N. J. Færgeman. Autophagy in the light of sphingolipid metabolism. Apoptosis 20(5):658–670, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hon, G. C., C. X. Song, T. Du, F. Jin, S. Selvaraj, A. Y. Lee, C. A. Yen, Z. Ye, S. Q. Mao, B. A. Wang, S. Kuan, L. E. Edsall, B. S. Zhao, G. L. Xu, C. He, and B. Ren. 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell. 56(2):286–297, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kim, K. H., and M. S. Lee. Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol. 10(6):322–337, 2014.

    Article  CAS  PubMed  Google Scholar 

  13. Ko, M., J. An, W. A. Pastor, S. B. Koralov, K. Rajewsky, and A. Rao. TET proteins and 5-methylcytosine oxidation in hematological cancers. Immunol. Rev. 263(1):6–21, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koskinas, K. C., C. L. Feldman, Y. S. Chatzizisis, A. U. Coskun, M. Jonas, C. Maynard, A. B. Baker, M. I. Papafaklis, E. R. Edelman, and P. H. Stone. Natural history of experimental coronary atherosclerosis and vascular remodeling in relation to endothelial shear stress: a serial, in vivo intravascular ultrasound study. Circulation 121(19):2092–2101, 2010.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Koskinas, K. C., G. K. Sukhova, A. B. Baker, M. I. Papafaklis, Y. S. Chatzizisis, A. U. Coskun, T. Quillard, M. Jonas, C. Maynard, A. P. Antoniadis, G. P. Shi, P. Libby, E. R. Edelman, C. L. Feldman, and P. H. Stone. Thin-capped atheromata with reduced collagen content in pigs develop in coronary arterial regions exposed to persistently low endothelial shear stress. Arterioscler. Thromb. Vasc. Biol. 33(7):1494–1504, 2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lavandero, S., M. Chiong, B. A. Rothermel, and J. A. Hill. Autophagy in cardiovascular biology. J. Clin. Invest. 125(1):55–64, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li, G., J. Peng, Y. Liu, X. Li, Q. Yang, Y. Li, Z. Tang, Z. Wang, Z. Jiang, and D. Wei. Oxidized low-density lipoprotein inhibits HP-1-derived macrophage autophagy via TET2 down-regulation. Lipids 50(2):177–183, 2015.

    Article  CAS  PubMed  Google Scholar 

  18. Li, X., Q. Yang, Z. Wang, and D. Wei. Shear stress in atherosclerotic plaque determination. DNA Cell Biol. 33(12):830–838, 2014.

    Article  CAS  PubMed  Google Scholar 

  19. Liu, R., Y. Jin, W. H. Tang, L. Qin, X. Zhang, G. Tellides, J. Hwa, J. Yu, and K. A. Martin. Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle cell plasticity. Circulation 128(18):2047–2057, 2013.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Madeo, F., A. Zimmermann, M. C. Maiuri, and G. Kroemer. Essential role for autophagy in life span extension. J. Clin. Invest. 125(1):85–93, 2015.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Magné, J., P. Gustafsson, H. Jin, L. Maegdefessel, K. Hultenby, A. Wernerson, P. Eriksson, A. Franco-Cereceda, P. T. Kovanen, I. Gonçalves, and E. Ehrenborg. ATG16L1 expression in carotid atherosclerotic plaques is associated with plaque vulnerability. Arterioscler. Thromb. Vasc. Biol. 35(5):1226–1235, 2015.

    Article  PubMed  Google Scholar 

  22. Nah, J., J. Yuan, and Y. K. Jung. Autophagy in neurodegenerative diseases: from mechanism to therapeutic approach. Mol. Cells 38(5):381–389, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakajima, H., and H. Kunimoto. TET2 as an epigenetic master regulator for normal and malignant hematopoiesis. Cancer Sci. 105(9):1093–1099, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Nussenzweig, S. C., S. Verma, and T. Finkel. The role of autophagy in vascular biology. Circ. Res. 116(3):480–488, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Okashita, N., Y. Kumaki, K. Ebi, M. Nishi, Y. Okamoto, M. Nakayama, S. Hashimoto, T. Nakamura, K. Sugasawa, N. Kojima, T. Takada, M. Okano, and Y. Seki. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Development. 141(2):269–280, 2014.

    Article  CAS  PubMed  Google Scholar 

  26. Peng, N., N. Meng, S. Wang, F. Zhao, J. Zhao, L. Su, S. Zhang, Y. Zhang, B. Zhao, and J. Miao. An activator of mTOR inhibits oxLDL-induced autophagy and apoptosis in vascular endothelial cells and restricts atherosclerosis in apolipoprotein E−/− mice. Sci Rep. 4:5519, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Petersen, M., D. Hofius, and S. U. Andersen. Signaling unmasked: autophagy and catalase promote programmed cell death. Autophagy. 10(3):520–521, 2014.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Qi, Y. X., J. Jiang, X. H. Jiang, X. D. Wang, S. Y. Ji, Y. Han, D. K. Long, B. R. Shen, Z. Q. Yan, S. Chien, and Z. L. Jiang. PDGF-BB and TGF-{beta}1 on cross-talk etween endothelial and smooth muscle cells in vascular remodeling induced by low shear stress. Proc. Natl. Acad. Sci. USA 108(5):1908–1913, 2011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rasmussen, K. D., G. Jia, J. V. Johansen, M. T. Pedersen, N. Rapin, F. O. Bagger, B. T. Porse, O. A. Bernard, J. Christensen, and K. Helin. Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis. Genes Dev. 29(9):910–922, 2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Razani, B., C. Fangs, T. Coleman, R. Emanuel, H. Wen, S. Hwang, J. P. Ting, H. W. Virgin, M. B. Kastan, and C. F. Semenkovich. Autophagy links inflammasomes to atherosclerotic progression. Cell Metab. 15(4):534–544, 2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Robertson, A. B., J. A. Dahl, and A. Klungland. DNA metabolism: bases of DNA repair and regulation. Nat. Chem. Biol. 10(7):487–488, 2014.

    Article  CAS  PubMed  Google Scholar 

  32. Santiago, M., C. Antunes, M. Guedes, and N. Sousa. Marques CJ.TET enzymes and DNA hydroxymethylation in neural development and function - how critical are they? Genomics 104(5):334–340, 2014.

    Article  CAS  PubMed  Google Scholar 

  33. Stone, P. H., S. Saito, S. Takahashi, Y. Makita, S. Nakamura, T. Kawasaki, A. Takahashi, T. Katsuki, S. Nakamura, A. Namiki, A. Hirohata, T. Matsumura, S. Yamazaki, H. Yokoi, S. Tanaka, S. Otsuji, F. Yoshimachi, J. Honye, D. Harwood, M. Reitman, A. U. Coskun, M. I. Papafaklis, and C. L. Feldman. Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the prediction study. Circulation 126(2):172–181, 2012.

    Article  PubMed  Google Scholar 

  34. Xiong, Y., G. Yepuri, M. Forbiteh, Y. Yu, J. P. Montani, Z. Yang, and X. F. Ming. ARG2 impairs endothelial autophagy through regulation of MTOR and PRKAA/AMPK signaling in advanced atherosclerosis. Autophagy. 10(12):2223–2238, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Young, A., W. Wu, W. Sun, H. Benjamin Larman, N. Wang, Y. S. Li, J. Y. Shyy, S. Chien, and G. García-Cardeña. Flow activation of AMP-activated protein kinase in vascular endothelium leads to Krüppel-like factor 2 expression. Arterioscler Thromb Vasc Biol. 29(11):1902–1908, 2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zhou, J., Y. S. Li, and S. Chien. Shear stress-initiated signaling and its regulation of endothelial function. Arterioscler. Thromb. Vasc. Biol. 34(10):2191–2198, 2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The present research is supported by the National Natural Science Foundation of China (81370378, 30800449), the construct program of the key discipline in Hunan province and Zhengxiang Scholar Program of University of South China (2014-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhao Peng, Yu Wang or Dangheng Wei.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Qin Yang, Xiaohong Li, and Rongqing Li have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Li, X., Li, R. et al. Low Shear Stress Inhibited Endothelial Cell Autophagy Through TET2 Downregulation. Ann Biomed Eng 44, 2218–2227 (2016). https://doi.org/10.1007/s10439-015-1491-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1491-4

Keywords

Navigation