Skip to main content

Advertisement

Log in

Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Fatigue assessment of the trabecular bone has been developed to give a better understanding of bone properties. While most fatigue studies are relying on uniaxial compressive load as the method of assessment, in various cases details are missing, or the uniaxial results are not very realistic. In this paper, the effect of three different load histories from physiological loading applied on the trabecular bone were studied in order to predict the first failure surface and the fatigue lifetime. The fatigue behaviour of the trabecular bone under uniaxial load was compared to that of multiaxial load using a finite element simulation. The plastic strain was found localized at the trabecular structure under multiaxial load. On average, applying multiaxial loads reduced more than five times the fatigue life of the trabecular bone. The results provide evidence that multiaxial loading is dominated in the low cycle fatigue in contrast to the uniaxial one. Both bone volume fraction and structural model index were best predictors of failure (p < 0.05) in fatigue for both types of loading, whilst uniaxial loading has indicated better values in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bailey, A. J., T. J. Sims, E. N. Ebbesen, J. P. Mansell, J. S. Thomsen, and L. Mosekilde. Age-related changes in the biochemical properties of human cancellous bone collagen: relationship to bone strength. Calcif. Tissue Int. 65:203–210, 1999.

    Article  CAS  PubMed  Google Scholar 

  2. Bayraktar, H. H., A. Gupta, R. Y. Kwon, P. Papadopoulos, and T. M. Keaveny. The modified super-ellipsoid yield criterion for human trabecular bone. J. Biomech. Eng. 126:677–684, 2004.

    Article  PubMed  Google Scholar 

  3. Bergmann, G., F. Graichen, A. Rohlmann, A. Bender, B. Heinlein, G. N. Duda, M. O. Heller, and M. M. Morlock. Realistic loads for testing hip implants. Biomed. Mater. Eng. 20:65–75, 2010.

    CAS  PubMed  Google Scholar 

  4. Bowman, S. M., X. E. Guo, D. W. Cheng, T. M. Keaveny, L. J. Gibson, W. C. Hayes, and T. A. McMahon. Creep contributes to the fatigue behavior of bovine trabecular bone. J. Biomech. Eng. 120:647–654, 1998.

    Article  CAS  PubMed  Google Scholar 

  5. Brandt, K. D., P. Dieppe, and E. L. Radin. Etiopathogenesis of osteoarthritis. Rheum. Dis. Clin. N. Am. 34:531–559, 2008.

    Article  Google Scholar 

  6. Burr, D. B., M. R. Forwood, D. P. Fyhrie, R. B. Martin, M. B. Schaffler, and C. H. Turner. Bone microdamage and skeletal fragility in osteoporotic and stress fractures. J. Bone Miner. Res. 12:6–15, 1997.

    Article  CAS  PubMed  Google Scholar 

  7. Burr, D. B., C. Milgrom, D. Fyhrie, M. Forwood, M. Nyska, A. Finestone, S. Hoshaw, E. Saiag, and A. Simkin. In vivo measurement of human tibial strains during vigorous activity. Bone 18:405–410, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Carter, D. R., W. E. Caler, D. M. Spengler, and V. H. Frankel. Fatigue behavior of adult cortical bone: the influence of mean strain and strain range. Acta Orthop. 52:481–490, 1981.

    Article  CAS  Google Scholar 

  9. Carter, D. R., and D. M. Spengler. Mechanical properties and composition of cortical bone. Clin. Orthop. Relat. Res. 135:192–217, 1978.

    Google Scholar 

  10. Chen, P. Y., and J. McKittrick. Compressive mechanical properties of demineralized and deproteinized cancellous bone. J. Mech. Behav. Biomed. Mater. 4:961–973, 2011.

    Article  CAS  PubMed  Google Scholar 

  11. Currey, J. D. Role of collagen and other organics in the mechanical properties of bone. Osteoporos. Int. 14(Suppl 5):S29–S36, 2003.

    Google Scholar 

  12. Dendorfer, S., H. J. Maier, and J. Hammer. Fatigue damage in cancellous bone: an experimental approach from continuum to micro scale. J. Mech. Behav. Biomed. Mater. 2:113–119, 2009.

    Article  CAS  PubMed  Google Scholar 

  13. Dendorfer, S., H. J. Maier, D. Taylor, and J. Hammer. Anisotropy of the fatigue behaviour of cancellous bone. J. Biomech. 41:636–641, 2008.

    Article  CAS  PubMed  Google Scholar 

  14. Ding, M., A. Odgaard, F. Linde, and I. Hvid. Age-related variations in the microstructure of human tibial cancellous bone. J. Orthop. Res. 20:615–621, 2002.

    Article  PubMed  Google Scholar 

  15. Dutta, K., S. Sivaprasad, S. Tarafder, and K. K. Ray. Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behaviour of AISI 304LN stainless steel. Mater. Sci. Eng. A 527:7571–7579, 2010.

    Article  Google Scholar 

  16. Eckstein, F., M. Fischbeck, V. Kuhn, T. M. Link, M. Priemel, and E.-M. Lochmüller. Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men. Bone 35:364–374, 2004.

    Article  PubMed  Google Scholar 

  17. Freeman, M. A., W. H. Day, and S. A. Swanson. Fatigue fracture in the subchondral bone of the human cadaver femoral head. Med. Biol. Eng. 9:619–629, 1971.

    Article  CAS  PubMed  Google Scholar 

  18. Fyhrie, D. P., and D. R. Carter. Femoral head apparent density distribution predicted from bone stresses. J. Biomech. 23:1–10, 1990.

    Article  CAS  PubMed  Google Scholar 

  19. Garcia, D., P. Zysset, M. Charlebois, and A. Curnier. A three-dimensional elastic plastic damage constitutive law for bone tissue. Biomech. Model. Mechanobiol. 8:149–165, 2009.

    Article  PubMed  Google Scholar 

  20. George, W. T., and D. Vashishth. Damage mechanisms and failure modes of cortical bone under components of physiological loading. J. Orthop. Res. 23:1047–1053, 2005.

    Article  CAS  PubMed  Google Scholar 

  21. George, W. T., and D. Vashishth. Susceptibility of aging human bone to mixed-mode fracture increases bone fragility. Bone 38:105–111, 2006.

    Article  CAS  PubMed  Google Scholar 

  22. Gong, H., M. Zhang, L. Qin, K. K. Lee, X. Guo, and S. Q. Shi. Regional variations in microstructural properties of vertebral trabeculae with structural groups. Spine 31:24–32, 2006.

    Article  PubMed  Google Scholar 

  23. Gronkiewicz, K., P. Majewski, G. Wisniewska, M. Pihut, B. W. Loster, and S. Majewski. Experimental research on the possibilities of maintaining thermal conditions within the limits of the physiological conditions during intraoral preparation of dental implants. J. Physiol. Pharmacol. 60(Suppl 8):123–127, 2009.

    PubMed  Google Scholar 

  24. Guillen, T., A. Ohrndorf, G. Tozzi, J. Tong, and H. J. Christ. Compressive fatigue behavior of bovine cancellous bone and bone analogous materials under multi-step loading conditions. Adv. Eng. Mater. 14:B199–B207, 2012.

    Article  Google Scholar 

  25. Guo, X.-D. E., T. A. McMahon, T. M. Keaveny, W. C. Hayes, and L. J. Gibson. Finite element modeling of damage accumulation in trabecular bone under cyclic loading. J. Biomech. 27:145–155, 1994.

    Article  CAS  PubMed  Google Scholar 

  26. Gupta, A., H. Bayraktar, J. Fox, T. Keaveny, and P. Papadopoulos. Constitutive modeling and algorithmic implementation of a plasticity-like model for trabecular bone structures. Comput. Mech. 40:61–72, 2007.

    Article  Google Scholar 

  27. Haddock, S. M., O. C. Yeh, P. V. Mummaneni, W. S. Rosenberg, and T. M. Keaveny. Similarity in the fatigue behavior of trabecular bone across site and species. J. Biomech. 37:181–187, 2004.

    Article  PubMed  Google Scholar 

  28. Harrigan, T. P., M. Jasty, R. W. Mann, and W. H. Harris. Limitations of the continuum assumption in cancellous bone. J. Biomech. 21:269–275, 1988.

    Article  CAS  PubMed  Google Scholar 

  29. Hill, R. A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A Math. Phys. Sci. 193:281–297, 1948.

    Article  CAS  Google Scholar 

  30. Homminga, J., B. R. McCreadie, T. E. Ciarelli, H. Weinans, S. A. Goldstein, and R. Huiskes. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30:759–764, 2002.

    Article  CAS  PubMed  Google Scholar 

  31. Homminga, J., B. R. McCreadie, T. E. Ciarelli, H. Weinans, S. A. Goldstein, and R. Huiskes. Cancellous bone mechanical properties from normals and patients with hip fractures differ on the structure level, not on the bone hard tissue level. Bone 30:759–764, 2002.

    Article  CAS  PubMed  Google Scholar 

  32. Kohles, S. S., J. B. Roberts, M. L. Upton, C. G. Wilson, L. J. Bonassar, and A. L. Schlichting. Direct perfusion measurements of cancellous bone anisotropic permeability. J. Biomech. 34:1197–1202, 2001.

    Article  CAS  PubMed  Google Scholar 

  33. Kosmopoulos, V., C. Schizas, and T. S. Keller. Modeling the onset and propagation of trabecular bone microdamage during low-cycle fatigue. J. Biomech. 41:515–522, 2008.

    Article  PubMed  Google Scholar 

  34. Legrand, E., D. Chappard, C. Pascaretti, M. Duquenne, S. Krebs, V. Rohmer, M.-F. Basle, and M. Audran. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J. Bone Miner. Res. 15:13–19, 2000.

    Article  CAS  PubMed  Google Scholar 

  35. Lemaitre, J., and J. L. Chaboche. Mechanics of Solid Materials. Cambridge: Cambridge University Press, 1990.

    Book  Google Scholar 

  36. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Fracture prediction for the proximal femur using finite element models: part I-linear analysis. J. Biomech. Eng. 113:353–360, 1991.

    Article  CAS  PubMed  Google Scholar 

  37. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Fracture prediction for the proximal femur using finite element models: part II-nonlinear analysis. J. Biomech. Eng. 113:361–365, 1991.

    Article  CAS  PubMed  Google Scholar 

  38. Lotz, J. C., E. J. Cheal, and W. C. Hayes. Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture. Osteoporos. Int. 5:252–261, 1995.

    Article  CAS  PubMed  Google Scholar 

  39. Makiyama, A. M., S. Vajjhala, and L. J. Gibson. Analysis of crack growth in a 3D Voronoi structure: a model for fatigue in low density trabecular bone. J. Biomech. Eng. 124:512–520, 2002.

    Article  CAS  PubMed  Google Scholar 

  40. Michel, M. C., X. D. Guo, L. J. Gibson, T. A. McMahon, and W. C. Hayes. Compressive fatigue behavior of bovine trabecular bone. J. Biomech. 26:453–463, 1993.

    Article  CAS  PubMed  Google Scholar 

  41. Moore, T. L., and L. J. Gibson. Fatigue of bovine trabecular bone. J. Biomech. Eng. 125:761–768, 2003.

    Article  PubMed  Google Scholar 

  42. Ottosen, N. S., and M. Ristinmaa. The Mechanics of Constitutive Modeling. London: Elsevier Science, 2005.

    Google Scholar 

  43. Pattin, C. A., W. E. Caler, and D. R. Carter. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech. 29:69–79, 1996.

    Article  CAS  PubMed  Google Scholar 

  44. Peterson, D. L., J. S. Skraba, J. M. Moran, and A. S. Greenwald. Fracture of long bones: rate effects under singular and combined loading states. J. Orthop. Res. 1:244–250, 1984.

    Article  CAS  PubMed  Google Scholar 

  45. Schaffler, M. B., K. Choi, and C. Milgrom. Aging and matrix microdamage accumulation in human compact bone. Bone 17:521–525, 1995.

    Article  CAS  PubMed  Google Scholar 

  46. Shim, V. P. W., L. M. Yang, J. F. Liu, and V. S. Lee. Characterisation of the dynamic compressive mechanical properties of cancellous bone from the human cervical spine. Int. J. Impact Eng. 32:525–540, 2005.

    Article  Google Scholar 

  47. Silva, M. J., T. M. Keaveny, and W. C. Hayes. Load sharing between the shell and centrum in the lumbar vertebral body. Spine 22:140–150, 1997.

    Article  CAS  PubMed  Google Scholar 

  48. Simo, J. C. Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory. Comput. Methods Appl. Mech. Eng. 99:61–112, 1992.

    Article  Google Scholar 

  49. Stauber, M., and R. Müller. Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos. Int. 17:616–626, 2006.

    Article  CAS  PubMed  Google Scholar 

  50. Stone, J. L., G. S. Beaupre, and W. C. Hayes. Multiaxial strength characteristics of trabecular bone. J. Biomech. 16:743–752, 1983.

    Article  CAS  PubMed  Google Scholar 

  51. Syahrom, A., M. Abdul Kadir, J. Abdullah, and A. Öchsner. Mechanical and microarchitectural analyses of cancellous bone through experiment and computer simulation. Med. Biol. Eng. Comput. 49:1393–1403, 2011.

    Article  PubMed  Google Scholar 

  52. Teo, J. C. M., K. M. Si-Hoe, J. E. L. Keh, and S. H. Teoh. Correlation of cancellous bone microarchitectural parameters from microCT to CT number and bone mechanical properties. Mater. Sci. Eng. C 27:333–339, 2007.

    Article  CAS  Google Scholar 

  53. Thomsen, J. S., E. N. Ebbesen, and L. I. Mosekilde. Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone 31:136–142, 2002.

    Article  CAS  PubMed  Google Scholar 

  54. Tomar, V. Insights into the effects of tensile and compressive loadings on microstructure dependent fracture of trabecular bone. Eng. Fract. Mech. 76:884–897, 2009.

    Article  Google Scholar 

  55. Turner, M. S. The association between tibial torsion and knee joint pathology. Clin. Orthop. Relat. Res. 302:47–51, 1994.

    Google Scholar 

  56. van Lenthe, G. H., M. Stauber, and R. Müller. Specimen-specific beam models for fast and accurate prediction of human trabecular bone mechanical properties. Bone 39:1182–1189, 2006.

    Article  PubMed  Google Scholar 

  57. Varvani-Farahani, A., and H. Najmi. A damage assessment model for cadaveric cortical bone subjected to fatigue cycles. Int. J. Fatigue 32:420–427, 2010.

    Article  CAS  Google Scholar 

  58. Vashishth, D., K. E. Tanner, and W. Bonfield. Fatigue of cortical bone under combined axial-torsional loading. J. Orthop. Res. 19:414–420, 2001.

    Article  CAS  PubMed  Google Scholar 

  59. Wang, X., J. Guyette, X. Liu, R. K. Roeder, and G. L. Niebur. Axial-shear interaction effects on microdamage in bovine tibial trabecular bone. Eur. J. Morphol. 42:61–70, 2005.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was sponsored by the Kementerian Pendidikan Malaysia (KPM) through Grant scheme (R.J130000.7809.4F355). The authors would also like to thank the Research Management Centre, Universiti Teknologi Malaysia, for managing the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ardiyansyah Syahrom.

Additional information

Associate Editor Eiji Tanaka oversaw the review of this article.

Appendix

Appendix

Implementation of Gait Loading

A set of polynomial functions derived from Matlab relative to gait loading during normal walking were used to formulate the time dependent behaviour of trabecular bone under fatigue analysis.

$$\begin{aligned} F_{x} = - 1E6\left( { - 0.3434t^{7} + 1.1756t^{6} - 1.5667t^{5} + 1.0239t^{4} - 0.3369t^{3} + 0.0490t^{2} - 0.0013t + 0.0002} \right) \hfill \\ F_{y} = - 1E5\left( { - 1.1068t^{7} + 3.8818t^{6} - 4.8999t^{5} + \, 2.4244t^{4} - \, 0.0797t^{3} {-} \, 0.2734t^{2} + \, 0.0542t - 0.0010} \right) \hfill \\ F_{z} = - 1E5 \, \left( { - \, 2.9006t^{7} + \, 7.0557t^{6} {-} \, 3.5732t^{5} {-} \, 3.5934t^{4} + \, 4.4087t^{3} {-} \, 1.6199t^{2} + \, 0.2244t \, + \, 0.0048} \right) \hfill \\ \end{aligned}$$

The initial gait loading reduce to the trabecular loading as the following;

Normal force, F z  = −1E5 (−2.1755t 7 + 5.2918t 6 − 2.6799t 5 − 2.6951t 4 + 3.3065t 3 − 1.2149t 2 + 0.1683t + 0.0036)

Torsional moment, T = 1E3 (1.1352t 7 − 3.9095t 6 + 5.1417t 5 − 3.1659t 4 + 0.8622t 3 − 0.0542t 2 − 0.0168t − 0.0003)

Thus, T xy  = 1E3 (0.8514t 7 − 2.9321t 6 + 3.8563t 5 − 2.3744t 4 + 0.6467t 3 − 0.0407t 2 − 0.0126t − 0.0002)

Influencing Parameter in Fatigue Life Prediction

Figure 9 shows increasing cycles to failure with function of fatigue strength coefficient while other parameters are constant. This figure also shows a small deviation (lower than 5%) of different Q value and predetermined fatigue strength coefficient in all cases. Q values determines the number of evaluation points used in the search for the critical plane and thus it controls the computational time. A smooth transition in the results indicates that the specified search resolution for the critical plane is sufficient to correctly capture the fatigue response. A mesh convergence also has been done on Fig. 10 to estimate accurate fatigue life in low cycle fatigue and effective plastic strain and this sensitivity analysis is consistent under static initial modulus and fatigue properties. Details on the definition of fatigue parameter are shown in Fig. 11. Fatigue strength exponent, b and fatigue strength coefficient, σf normally cover the entire range of high cycle fatigue that can be explained in logarithmic increase of fatigue cycles. Both increase of these two parameter will increase fatigue failure prediction. In contrast to high cycle fatigue, effect of fatigue ductility coefficient, εf on low cycle fatigue prediction is insignificant to plastic strain. However the prediction of number of cycle to failure is affected. Increasing value of fatigue ductility coefficient could result in higher prediction of fatigue cycle in which the same effect can be obtained by reducing the value of fatigue ductility exponent, c. In this study, consistent initial fatigue parameter and coefficients derived from the bovine bone and consider valid in all type of analysis regarding to fatigue life prediction.

Figure 9
figure 9

Effect of search resolution, Q, on critical plane setting evaluation in fatigue analysis. The accuracy of the algorithm is determined by the spacing of the points, which can be selected by the critical point evaluation as the search resolution setting Q = (N + 1).

Figure 10
figure 10

Mesh convergence analysis performed to obtain the optimum number of elements in prediction of cycle to failure and effective plastic strain.

Figure 11
figure 11

Typical fatigue life curve under combination Basquin and Coffin–Manson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatihhi, S.J., Harun, M.N., Abdul Kadir, M.R. et al. Uniaxial and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A Comparative Study. Ann Biomed Eng 43, 2487–2502 (2015). https://doi.org/10.1007/s10439-015-1305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1305-8

Keywords

Navigation