Skip to main content
Log in

Heterogeneous Susceptibility of Valve Endothelial Cells to Mesenchymal Transformation in Response to TNFα

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Lack of understanding of the early mechanisms of aortic valve stenosis and calcification hinders the development of diagnostic and therapeutic intervention strategies. Inflammation is a known component of early aortic valve disease and can induce mesenchymal transformation in a subset of aortic valve endothelial cells. Here we present a three-dimensional culture system that allows transforming and non-transforming cells to be independently isolated and analyzed. We have used the system to identify and characterize the dynamic invasion and phenotypic transition of two distinct subsets of endothelial cells: those that invade and transform under TNFα treatment, and those that resist mesenchymal transformation and remain endothelial. We determine that non-transformed cells maintain control levels of endothelial genes VE-cadherin and eNOS, while transformed cells lose these endothelial characteristics and upregulate α-smooth muscle actin. Both subsets of cells have an inflammatory phenotype marked by increased ICAM-1, but transformed cells have increased MMP-9, Notch1, TGF-β, and BMP-4, while non-transformed cells do not. Transformed cells also have distinct effects on alignment of collagen fibers as they invade the hydrogel system, which is not found in control endothelial or interstitial valve cells. Understanding the role of transforming and non-transforming endothelial cells in valve disease will provide an important pathological link between early inflammation and later stages of disease. Discovery of the molecular signature of transformation-resistant endothelial cells could inform development of treatment strategies that promote survival of the valve endothelium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Aikawa, E., M. Nahrendorf, D. Sosnovik, V. M. Lok, F. A. Jaffer, M. Aikawa, and R. Weissleder. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115:377–386, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Ankeny, R. F., V. H. Thourani, D. Weiss, J. D. Vega, W. R. Taylor, R. M. Nerem, and H. Jo. Preferential activation of SMAD1/5/8 on the fibrosa endothelium in calcified human aortic valves: association with low BMP antagonists and SMAD6. PLoS ONE 6:e20969, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Balachandran, K., P. Alford, J. Wylie-Sears, J. A. Goss, A. Grosberg, J. Bischoff, E. Aikawa, R. A. Levine, and K. K. Parker. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc. Natl. Acad. Sci. U.S.A. 108:19943–19948, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bischoff, J., and E. Aikawa. Progenitor cells confer plasticity to cardiac valve endothelium. J. Cardiovasc. Transl. Res. 4:710–719, 2011.

    Article  PubMed  Google Scholar 

  5. Boström, K., K. E. Watson, S. Horn, C. Wortham, I. M. Herman, and L. L. Demer. Bone morphogenetic protein expression in human atherosclerotic lesions. J. Clin. Invest. 91:1800–1809, 1993.

    Article  PubMed Central  PubMed  Google Scholar 

  6. Butcher, J. T., and R. M. Nerem. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 12:905–915, 2006.

    Article  CAS  PubMed  Google Scholar 

  7. Cano, A., M. A. Pérez-Moreno, I. Rodrigo, A. Locascio, M. J. Blanco, M. G. del Barrio, F. Portillo, and M. A. Nieto. The transcription factor Snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol. 2:76–83, 2000.

    Article  CAS  PubMed  Google Scholar 

  8. Chang, A. C. Y., Y. Fu, V. C. Garside, K. Niessen, L. Chang, M. Fuller, A. Setiadi, J. Smrz, A. Kyle, A. Minchinton, M. Marra, P. A. Hoodless, and A. Karsan. Notch initiates the endothelial-to-mesenchymal transition in the atrioventricular canal through autocrine activation of soluble guanylyl cyclase. Dev. Cell 21:288–300, 2011.

    Article  CAS  PubMed  Google Scholar 

  9. Edep, M. E., J. Shirani, P. Wolf, and D. L. Brown. Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc. Pathol. 9:281–286, 2000.

    Article  CAS  PubMed  Google Scholar 

  10. Fondard, O., D. Detaint, B. Lung, C. Choqueux, H. Adle-Biassette, M. Jarraya, U. Hvass, J. P. Couetil, D. Henin, J. B. Michel, A. Vahanian, and M. P. Jacob. Extracellular matrix remodeling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur. Heart J. 26:1333–1341, 2005.

    Article  CAS  PubMed  Google Scholar 

  11. Galichon, P., and A. Hertig. Epithelial to mesenchymal transition as a biomarker in renal fibrosis: are we ready for the bedside? Fibrogenesis Tissue Repair 4:11, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Garg, V., A. N. Muth, J. F. Ransom, M. K. Schluterman, R. Barnes, I. N. King, P. D. Grossfeld, and D. Srivastava. Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274, 2005.

    Article  CAS  PubMed  Google Scholar 

  13. Ghaisas, N., J. Foley, D. O’Briain, P. Crean, D. Kelleher, and M. Walsh. Adhesion molecules in nonrheumatic aortic valve disease: endothelial expression, serum levels and effects of valve replacement. J. Am. Coll. Cardiol. 36:2257–2262, 2000.

    Article  CAS  PubMed  Google Scholar 

  14. Go, A. S., et al. Heart disease and stroke statistics—2013 Update: a report from the American Heart Association. Circulation 127:e6–e245, 2013.

    Article  PubMed  Google Scholar 

  15. Goldbarg, S. H., S. Elmariah, M. A. Miller, and V. Fuster. Insights into degenerative aortic valve disease. J. Am. Coll. Cardiol. 50:1205–1230, 2007.

    Article  PubMed  Google Scholar 

  16. Gould, R. A., and J. T. Butcher. Isolation of valvular endothelial cells. J. Vis. Exp. 46:1–5, 2010.

    Google Scholar 

  17. Guerraty, M. A., G. R. Grant, J. W. Karanian, O. A. Chiesa, W. F. Pritchard, and P. F. Davies. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-pathway activation in swine aortic valve endothelium. Arterioscler. Thromb. Vasc. Biol. 30:225–231, 2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Hjortnaes, J., J. Butcher, J. L. Figueiredo, M. Riccio, R. H. Kohler, K. M. Kozloff, R. Weissleder, and E. Aikawa. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur. Heart J. 31:1975–1984, 2010.

    Article  CAS  PubMed  Google Scholar 

  19. Hollier, B. G., A. A. Tinnirello, S. J. Werden, K. W. Evans, J. H. Taube, T. R. Sarkar, N. Sphyris, M. Shariati, S. V. Kumar, V. L. Battula, J. I. Herschkowitz, R. Guerra, J. T. Chang, N. Miura, J. M. Rosen, and S. A. Mani. FOXC2 expression links epithelial-mesenchymal transition and stem cell properties in breast cancer. Cancer Res. 73:1981–1992, 2013.

    Article  CAS  PubMed  Google Scholar 

  20. Jia, Q., B. W. McDill, S.-Z. Li, C. Deng, C.-P. Chang, and F. Chen. Smad signaling in the neural crest regulates cardiac outflow tract remodeling through cell autonomous and non-cell autonomous effects. Dev. Biol. 311:172–184, 2007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Jian, B., N. Narula, Q. Li, E. Mohler, and R. Levy. Progression of aortic valve stenosis: TGF-beta 1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann. Thorac. Surg. 75:457–465, 2003.

    Article  PubMed  Google Scholar 

  22. Kalluri, R., and R. A. Weinberg. The basics of epithelial-mesenchymal transition. J. Clin. Invest. 119:1420–1428, 2009.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu, A. C., and A. I. Gotlieb. Transforming growth factor-β regulates in vitro heart valve repair by activated valve interstitial cells. Am. J. Pathol. 173:1275–1285, 2008.

    Article  CAS  PubMed  Google Scholar 

  24. Mahler, G. J., E. J. Farrar, and J. T. Butcher. Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler. Thromb. Vasc. Biol. 33:121–130, 2013.

    Article  CAS  PubMed  Google Scholar 

  25. Mohler, E. R., M. K. Chawla, A. W. Chang, N. Vyavahare, R. J. Levy, L. Graham, and F. H. Gannon. Identification and characterization of calcifying valve cells from human and canine aortic valves. J. Heart Valve Dis. 8:254–260, 1999.

    PubMed  Google Scholar 

  26. Paranya, G., S. Vineberg, E. Dvorin, S. Kaushal, S. J. Roth, E. Rabkin, F. J. Schoen, and J. Bischoff. Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am. J. Pathol. 159:1335–1343, 2001.

    Article  CAS  PubMed  Google Scholar 

  27. Richards, J., I. El-Hamamsy, S. Chen, Z. Sarang, P. Sarathchandra, M. H. Yacoub, A. H. Chester, and J. T. Butcher. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. Am. J. Pathol. 182:1922–1931, 2013.

    Article  CAS  PubMed  Google Scholar 

  28. Simmons, C. A., G. R. Grant, E. Manduchi, and P. F. Davies. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ. Res. 96:792–799, 2005.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Stewart, W. J., and B. A. Carabello. Aortic valve disease. In: Textbook of Cardiovascular Medicine, edited by E. J. Topol, R. M. Califf, E. N. Prystowsky, J. D. Thomas, and P. D. Thompson. Philadelphia, PA: Lippincott Williams & Wilkins, 2006, pp. 366–388.

    Google Scholar 

  30. Sucosky, P., K. Balachandran, A. Elhammali, H. Jo, and A. P. Yoganathan. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-β1-dependent pathway. Arterioscler. Thromb. Vasc. Biol. 29:254–260, 2009.

    Article  CAS  PubMed  Google Scholar 

  31. Walker, G. A., K. S. Masters, D. N. Shah, K. S. Anseth, and L. A. Leinwand. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ. Res. 95:253–260, 2004.

    Article  CAS  PubMed  Google Scholar 

  32. Wylie-Sears, J., E. Aikawa, R. A. Levine, J.-H. Yang, and J. Bischoff. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler. Thromb. Vasc. Biol. 31:598–607, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Yang, J.-H., J. Wylie-Sears, and J. Bischoff. Opposing actions of Notch1 and VEGF in post-natal cardiac valve endothelial cells. Biochem. Biophys. Res. Commun. 374:512–516, 2008.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Shirks Meats of Dundee, NY for providing porcine aortic valves. This study was supported by the National Science Foundation Graduate Research Fellowship (EF), the Alfred P. Sloan Foundation (EF), NIH Grant HL110328, NSF CBET-0955172, and the LeDucq Foundation.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan T. Butcher.

Additional information

Associate Editor Sriram Neelamegham oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farrar, E.J., Butcher, J.T. Heterogeneous Susceptibility of Valve Endothelial Cells to Mesenchymal Transformation in Response to TNFα. Ann Biomed Eng 42, 149–161 (2014). https://doi.org/10.1007/s10439-013-0894-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0894-3

Keywords

Navigation