Skip to main content

Advertisement

Log in

Physiology Driven Adaptivity for the Numerical Solution of the Bidomain Equations

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Previous work [Whiteley, J. P. IEEE Trans. Biomed. Eng. 53:2139–2147, 2006] derived a stable, semi-implicit numerical scheme for solving the bidomain equations. This scheme allows the timestep used when solving the bidomain equations numerically to be chosen by accuracy considerations rather than stability considerations. In this study we modify this scheme to allow an adaptive numerical solution in both time and space. The spatial mesh size is determined by the gradient of the transmembrane and extracellular potentials while the timestep is determined by the values of: (i) the fast sodium current; and (ii) the calcium release from junctional sarcoplasmic reticulum to myoplasm current. For two-dimensional simulations presented here, combining the numerical algorithm in the paper cited above with the adaptive algorithm presented here leads to an increase in computational efficiency by a factor of around 250 over previous work, together with significantly less computational memory being required. The speedup for three-dimensional simulations is likely to be more impressive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Cherry E. M., Greenside H. S., Henriquez C. S. (2003) Efficient simulation of three-dimensional anisotropic cardiac tissue using an adaptive mesh refinement method. Chaos 13:853–865

    Article  PubMed  Google Scholar 

  2. Clancy C. E., Rudy Y. (2001) Cellular consequences of HERG mutations in the long QT syndrome: precursors to sudden cardiac death. Cardiovasc. Res. 50:301–313

    Article  PubMed  CAS  Google Scholar 

  3. Colli Franzone P., Pavarino L. F., Taccardi B. (2005) Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci. 197:35–66

    Article  PubMed  CAS  Google Scholar 

  4. Eriksson, K., D. Estep, P. Hansbo, and C. Johnson. Computational Differential Equations. Cambridge University Press, 1996.

  5. Hooks D. A., Tomlinson K. A., Marsden S. G., LeGrice I. J., Smaill B. H., Pullan A. J., Hunter P. J. (2002) Cardiac microstructure: implications for electrical propagation and defibrillation in the heart. Circ. Res. 91:331–338

    Article  PubMed  CAS  Google Scholar 

  6. Iserles, A. A First Course in the Numerical Analysis of Differential Equations. Cambridge Texts in Applied Maths, 1996, Chapter 4.

  7. Keener J. P., Bogar K. (1998) A numerical method for the solution of the bidomain equations in cardiac tissue. Chaos 8:234–241

    Article  PubMed  Google Scholar 

  8. Keener J. P., Sneyd J. (1998) Mathematical Physiology Chapter 11. Springer, New York

    Google Scholar 

  9. Latimer D. C., Roth B. J. (1998) Electrical stimulation of cardiac tissue by a bipolar electrode in a conductive bath. IEEE Trans. Biomed. Eng. 45:1449–1458

    Article  PubMed  CAS  Google Scholar 

  10. Luo C. H., Rudy Y. (1991) A model of the ventricular cardiac action potential. Depolarization, repolarization, and their interaction. Circ. Res. 68:1501–1526

    PubMed  CAS  Google Scholar 

  11. Murillo M, Cai X.-C. (2004) A fully implicit parallel algorithm for simulating the non–linear electrical activity of the heart. Numer. Linear Algebra Appl. 11:261–277

    Article  Google Scholar 

  12. Nash M. P., Panfilov A. V. (2004) Electromechanical model of excitable tissue to study reentrant cardiac arrhythmias. Prog. Biophys. Mol. Biol. 85:501–522

    Article  PubMed  Google Scholar 

  13. Noble D., Varghese A., Kohl P., Noble P. (1998) Improved guinea-pig ventricular cell model incorporating a diadic space, i Kr and i Ks , length- and tension-dependent processes. Can. J. Cardiol. 14:123–134

    PubMed  CAS  Google Scholar 

  14. Pennacchio M. (2004) The mortar finite element method for the cardiac bidomain model of extracellular potential. J. Sci. Comput. 20:191–210

    Article  Google Scholar 

  15. Qu Z., Garfinkel A. (1999) An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46:1166–1168

    Article  PubMed  CAS  Google Scholar 

  16. Qu Z., Weiss J. N., Garfinkel A. (1999) Cardiac electrical restitution properties and stability of reentrant spiral waves: a simulation study. Am. J. Physiol. 276:H269–H283

    PubMed  CAS  Google Scholar 

  17. Quan W., Evans S. J., Hastings H. M. (1998) Efficient integration of a realistic two-dimensional cardiac tissue model by domain decomposition. IEEE Trans. Biomed. Eng. 45:372–385

    Article  PubMed  CAS  Google Scholar 

  18. Skouibine K., Trayanova N., Moore P. (2000) A numerically efficient model for simulation of defibrilation in an active bidomain sheet of myocardium. Math. Biosci. 166:85–100

    Article  PubMed  CAS  Google Scholar 

  19. Sundnes J., Lines G. T., Tveito A. (2001) Efficient solution of ordinary differential equations modeling electrical activity in cardiac cells. Math. Biosci. 172:55–72

    Article  PubMed  CAS  Google Scholar 

  20. Süli, E., and D. F. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, 2003, Chapter 4.

  21. ten Tusscher K. H. W. J., Noble D., Noble P. J., Panfilov A. V. (2004) A model for human ventricular tissue. Am. J. Physiol. 286:H1573–H1589

    CAS  Google Scholar 

  22. Vigmond E. J., Aguel F., Trayanova N. A. (2002) Computational techniques for solving the bidomain equations in three dimensions. IEEE Trans. Biomed. Eng. 49:1260–1269

    Article  PubMed  Google Scholar 

  23. Weber dos Santos R., Plank G., Bauer S., Vigmond E. J. (2004) Parallel multigrid preconditioner for the cardiac bidomain model. IEEE Trans. Biomed. Eng. 51:1960–1968

    Article  PubMed  Google Scholar 

  24. Whiteley J. P. (2006) An efficient numerical technique for the solution of the monodomain and bidomain equations. IEEE Trans. Biomed. Eng. 53:2139–2147

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan P. Whiteley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiteley, J. Physiology Driven Adaptivity for the Numerical Solution of the Bidomain Equations. Ann Biomed Eng 35, 1510–1520 (2007). https://doi.org/10.1007/s10439-007-9337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-007-9337-3

Keywords

Navigation