Skip to main content
Log in

On the Passive Cardiac Conductivity

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

In order to relate the structure of cardiac tissue to its passive electrical conductivity, we created a geometrical model of cardiac tissue on a cellular scale that encompassed myocytes, capillaries, and the interstitial space that surrounds them. A special mesh generator was developed for this model to create realistically shaped myocytes and interstitial space with a controled degree of variation included in each model. In order to derive the effective conductivities, we used a finite element model to compute the currents flowing through the intracellular and extracellular space due to an externally applied electrical field. The product of these computations were the effective conductivity tensors for the intracellular and extracellular spaces. The simulations of bidomain conductivities for healthy tissue resulted in an effective intracellular conductivity of 0.16S/m (longitudinal) and 0.005S/m (transverse) and an effective extracellular conductivity of 0.21S/m (longitudinal) and 0.06S/m (transverse). The latter values are within the range of measured values reported in literature. Furthermore, we anticipate that this method can be used to simulate pathological conditions for which measured data is far more sparse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anversa, P., A. V. Loud, F. Giacomelli, and J. Wiener. Absolute morphometric study of myocardial hypertrophy in experimental hypertension, II. infrastructure of myocytes and interstitium. Lab. Invest. 38(5):597–609, 1978.

    Google Scholar 

  2. Baumann, S. B., D. R. Wozny, S. K. Kelly, and F. M. Meno. The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans. Biomed. Eng. 44:220–223, 1997.

    Article  Google Scholar 

  3. Beardslee, M. A., L. D. Lerner, P. N. Tadros, J. G. Laing, E. C. Beyer, K. A. Yamada, A. G. Kleber, R. B. Schuessler, and J. E. Saffitz. Dephosphyorylation and intracellular redistribution of ventricular Connexin43 during electrical uncoupling induced by ischemia. Circ. Res. 87:656–662, 2000.

    Google Scholar 

  4. Brown, A. M., K. S. Lee, and T. Powell. Voltage clamp and internal perfusion of single rat heart muscle cells. J. Physiol. 318:455–477, 1981.

    Google Scholar 

  5. Caille, J. P. Myoplasmic impedance of the barnacle muscle fiber. Can. J. PhysioL Pharmacol. 53(6):1178–1185, 1975.

    Google Scholar 

  6. Cascio, W. E., H. Yang, T. A. Johnson, B. J. Muller-Borer, and J. J. Lemasters. Electrical properties and conduction in perfused papillary muscle. Circ. Res. 89:807–814, 2001.

    Google Scholar 

  7. Clerc L. Directional differences of impulse spread in trabecular muscle from mammalian heart. J. Physiol. 255:335–346, 1976.

    Google Scholar 

  8. Foster, K. R., and H. P. Schwan. Dielectric properties of tissues and biological materials: A critical review. Crit. Rev. Biomed. Eng. 17(1):25–104, 1989.

    Google Scholar 

  9. Gabriel, S., R. W. Lau, and C. Gabriel. The dielectric properties of biological tissues. II. Measurements in the frequency range 10–20 GHz. Phys. Med. Biol. 41:2251–2269, 1996.

    Google Scholar 

  10. Gerdes, A. M., and F. H. Kasten. Morphometric study of endomyocardium and epimyocardium of the left ventricle in adult dogs. Am. J. Anal. 159(4):389–394, 1980.

    Google Scholar 

  11. Gerdes, A. M., S. E. Kellerman, J. A. Moore, K. E. Muffly, L. C. Clarck, P. Y. Reaves, K. B. Malec, P. P. McKeown, and D. D. Schocken. Structural remodeling of cardiac myoctes in patients with ischemic cardiomyopathy. Circulation 86:426–430, 1992.

    Google Scholar 

  12. Henriquez, C. S. Simulating the electrical behavior of cardiac tissue using the bidomain model. Crit. Rev. Biomed. Eng. 21(1):1–77, 1993.

    MathSciNet  Google Scholar 

  13. Hooks, D. A., K. A. Tomlinson, S. G. Marsden, I. J. LeGrice, B. H. Smaill, A. J. Pullan, and P. J. Hunter. Cardiac microstructure: Implications for electrical propagation and defibrillation in the heart. Circ. Res. 91:331–338, 2002.

    Article  Google Scholar 

  14. Hopenfeld, B., J. G. Stinstra, and R. S. MacLeod. Mechanism for ST depression associated with contiguous subendocardial ischemia. Journal Cardiovascular Electrophysiology 15(10):1200–1206, 2004.

    Google Scholar 

  15. Hopenfeld, B., J. G. Stinstra, and R. S. MacLeod. The effect of conductivity on ST segment epicardial potentials arising from subnedocardial ischemia. Ann. Biomed. Eng. 33(6):751–763, 2005.

    Article  Google Scholar 

  16. Jain, S. K., R. B. Schuessler, and J. E. Saffitz. Mechanisms of delayed electrical uncoupling induced by ischemic preconditioning. Circ. Res. 92(10):1138–1144, 2003.

    Article  Google Scholar 

  17. Johnston, P. R., and D. Kilpatrick. The effect of conductivity values on ST segment shift in Subendocardial ischaemia. IEEE Trans. Biomed. Eng. 50(2):150–158, 2003.

    Article  Google Scholar 

  18. Kleber, A. G., and C. B. Riegger. Electrical constants of arterially perfused rabbit papillary muscle. J. Physiol. 385:307–324, 1987.

    Google Scholar 

  19. Kushmerick, M. J., and R. J. Podolsky. Ionic mobility in muscle cells. Science 166:1297–1298, 1969.

    Google Scholar 

  20. LeGuyader, P., P. Savard, and F. Trelles. Measurement of myocardial conductivities with an eight-electrode technique in the frequeny domain. In Proceeding 17th Annual Conference of the IEEE Engineering in Medicine and Biology Society. Montreal, Canada, 1995.

  21. Metzger, P., and R. Weingart. Electric current flow in ell pairs isolated from adult rat hearts. J. Physiol. 366:177–195, 1985.

    Google Scholar 

  22. Neu, J. C., and W. Krassowska. Homogenization of syncytial tissues. Crit. Rev. Biomed. Eng. 21:137–199, 1993.

    Google Scholar 

  23. Pauly, H., L. Packer, and H. P. Schwan. Electrical properties of mitochondrial membranes. J. Biophys. Biochem. Cytol. 7(4):589–601, 1960.

    Google Scholar 

  24. Peters, M. J., J. G. Stinstra, and M. Hendriks. Estimation of the electrical conductivity of human tissue. Electromagnetics 21:545–557, 2001.

    Google Scholar 

  25. Plonsey, R. Bioelectric Phenomena. New York: McGraw Hill, 1969.

    Google Scholar 

  26. Poole-Wilson, P. A. The dimensions of human cardiac myocytes; confusion caused by methodology and pathology. J. Moll. Cell. Cardiol. 27:863–865, 1995.

    Google Scholar 

  27. Roberts, D. E., L. T. Hersch, and A. M. Scher. Influence of cardiac fiber orientation on wavefront voltage, conduction velocity and tissue resistivity. Circ. Res. 44:701–712, 1979.

    Google Scholar 

  28. Roberts, D. E., and A. M. Scher. Effect of tissue anisotropy on extracellualar potential fields in canine myocardium in situ. Circ. Res. 50:342–351, 1982.

    Google Scholar 

  29. Schaper, J., E. Meiser, and G. Stammler. Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ. Res. 56(3):377–391, 1985.

    Google Scholar 

  30. Schwann, H. P., and C. F. Kay. The conductivity of living tissues. Ann. N.Y. Acad. Set 65:1007–1013, 1956.

    Google Scholar 

  31. Spach, M. S., J. F. Heidlage, P. C. Dolber, and R. C. Barr. Electrophysiological effects of remodelling cardiac gap junctions and cell size: Experimental and model studies of normal cardiac growth. Circ. Res. 86, 2000.

  32. Stinstra, J. G., and M. J. Peters. The influence of fetoabdominal tissues on fetal ECGs and MCGs. Arch. Physiol. Biochem. 110(3): 165–176, 2002.

    Article  Google Scholar 

  33. Trautman, E. D., and R. S. Newbower. A practical analysis of the electrical conductivity of blood. IEEE Trans. Biomed. Eng. 30(3):141–153, 1983.

    Google Scholar 

  34. Tsai, J.-Z., J. A. Will, S. Hubbard-Van Stelle, H. Cao, S. Tungjitkusolmun, Y. B. Choy, D. Haemmerich, V. R. Vorperian, and J. G. Webster. Error analysis of tissue resistivity measurement. IEEE Trans. Biomed. Eng. 49:472–483, 2002.

    Google Scholar 

  35. Weingart, R. Electrical properties of the nexal membrane studied in rat ventricular cell pairs. J. Physiol. 370:267–284, 1986.

    Google Scholar 

  36. Wilders, R., and H. J. Jongsma. Limitations of the dual voltage clamp method in assaying conductance and kinetics of gap junction channals. Biophys. J. 63:942–953, 1992.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen G. Stinstra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stinstra, J.G., Hopenfeld, B. & MacLeod, R.S. On the Passive Cardiac Conductivity. Ann Biomed Eng 33, 1743–1751 (2005). https://doi.org/10.1007/s10439-005-7257-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-005-7257-7

Keywords

Navigation