Skip to main content
Log in

Dynamic tensile and failure behavior of bi-directional reinforced GFRP materials

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this paper, a series of static/dynamic tensile tests are performed for glass fiber reinforced plastic (GFRP) composites. Using the combination of high-speed photography and digital image correlation (DIC) technology, true stress–strain curves in different directions and strain rates are obtained. We also obtained the dynamic failure strain of the material in different directions, which are used to accurately describe the dynamic tensile and failure behavior of the material. The experimental results show that there is a stiffness change point N in three directions under different strain rate (10−3 s−1, 10 s−1, 100 s−1) tensile conditions. The stiffness before and after N point is recorded as Einitial and Echanged respectively. The values of Echanged in weft direction and warp direction are about 30% to 50% of Einitial, while Echanged in tilt direction is only about 10% of Einitial. The fiber has the highest strength in the weft direction and the tilt direction has the lowest strength. With the combination of high-speed photography and DIC technology, the dynamic failure parameters of different directions under the strain rate of 100 s−1 are obtained. The dynamic failure strains in three directions are 0.245, 0.373 and 0.341, respectively. The parameters are verified by impact three-point bending test. These works can more accurately describe the dynamic mechanical behavior of glass fiber reinforced plastic (GFRP) composites and provide reference for the design of GFRP structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Tran, P., Nguyen, Q.T., Lau, K., et al.: Fire performance of polymer-based composites for maritime infrastructure. Comp. Part B Eng. 155, 31–48 (2018)

    Article  Google Scholar 

  2. Suzuki, T., Mahfuz, H., Takanashi, M., et al.: A new stiffness degradation model for fatigue life prediction of GFRPs under random loading. Int. J. Fatigue 119, 220–228 (2019)

    Article  Google Scholar 

  3. Morgado, T., Silvestre, N., Correia, J.R., et al.: Simulation of fire resistance behaviour of pultruded GFRP beams—Part II: stress analysis and failure criteria. Compos. Struct. 188, 519–530 (2018)

    Article  Google Scholar 

  4. Benmokrane, B., Nazair, C., Loranger, M., et al.: Field durability study of vinyl-ester-based GFRP rebars in concrete bridge barriers. J. Bridge Eng. 23, 04018094 (2018)

    Article  Google Scholar 

  5. Yao, K., Yang, Y., Li, H., et al.: Material characterization of a multi-cavity composite structure for the bogie frame of urban maglev train. Comp. Part B Eng. 99, 277–287 (2016)

    Article  Google Scholar 

  6. Blaznov, A.N., Krasnova, A.S., Krasnov, A.A., et al.: Geometric and mechanical characterization of ribbed FRP rebars. Polym. Testing 63, 434–439 (2017)

    Article  Google Scholar 

  7. Zhang, S., Caprani, C.C., Heidarpour, A., et al.: Influence of fibre orientation on pultruded GFRP material properties. Compos. Struct. 204, 368–377 (2018)

    Article  Google Scholar 

  8. Songlin, Z., Xi, L.: Lightweight design of vehicle components based on strengthening effects of low amplitude loads below fatigue limit. Fatigue Fract. Eng. Mater. Struct. 35, 269–277 (2012)

    Article  Google Scholar 

  9. Koo, J.S., Cho, H.J.: Theoretical method for predicting the weight reduction rate of a box-type car body for rolling stock by material substitution design. Int. J. Automot. Technol. 10, 355–363 (2009)

    Article  Google Scholar 

  10. Rochard, B.P., Schmid, F.: Benefits of lower-mass trains for high speed rail operations. Proc. Inst. Civil Eng. Transp. 157, 51–64 (2004)

    Google Scholar 

  11. Cecchel, S., Ferrario, D., Panvini, A., et al.: Lightweight of a cross beam for commercial vehicles: development, testing and validation. Mater. Des. 149, 122–134 (2018)

    Article  Google Scholar 

  12. Onder, A., Robinson, M.: Harmonised method for impact resistance requirements of E-glass fibre/unsaturated polyester resin composite railway car bodies. Thin-walled Struct. 131, 151–164 (2018)

    Article  Google Scholar 

  13. Lee, S.J., Moon, D.Y., Ahn, C.H., et al.: A precast slab track partially reinforced with GFRP rebars. Comput. Concr. 21, 239–248 (2018)

    Google Scholar 

  14. Tino, S.R., de Aquino, E.M.: Fracture characteristics and anisotropy in notched glass fiber reinforced plastics. Mater. Res. Ibero Am. J. Mater. 17, 1610–1619 (2014)

    Google Scholar 

  15. Van, P.P., Mohareb, M.: A shear deformable theory for the analysis of steel beams reinforced with GFRP plates. Thin-walled Struct. 85, 165–182 (2014)

    Article  Google Scholar 

  16. Shang, J., Bai, Y., Xu, S., et al.: Dynamic constitutive equation of GFRP obtained by Lagrange experiment. Chin. Sci. Bull. 45, 1164–1169 (2000)

    Article  Google Scholar 

  17. Huang, Z., Nie, X., Xia, Y., et al.: Effect of strain rate and temperature on the dynamic tensile properties of GFRP. J. Mater. Sci. 39, 3479–3482 (2004)

    Article  Google Scholar 

  18. Asprone, D., Cadoni, E., Prota, A., et al.: Strain-rate sensitivity of a pultruded E-glass/polyester composite. J. Compos. Constr. 13, 558–564 (2009)

    Article  Google Scholar 

  19. Reis, P.N., Neto, M.A., Amaro, A.M., et al.: Effect of the extreme conditions on the tensile impact strength of GFRP composites. Compos. Struct. 188, 48–54 (2018)

    Article  Google Scholar 

  20. Chen, D.J., Chiang, F.P., Tan, Y., et al.: Digital speckle-displacement measurement using a complex spectrum method. Appl. Opt. 32, 1839–1849 (1993)

    Article  Google Scholar 

  21. Sjodahl, M., Benckert, L.: Electronic speckle photography: analysis of an algorithm giving the displacement with subpixel accuracy. Appl. Opt. 32, 2278–2284 (1993)

    Article  Google Scholar 

  22. Zhang, Z., Kang, Y., Wang, H., et al.: A novel coarse-fine search scheme for digital image correlation method. Measurement 39, 710–718 (2006)

    Article  Google Scholar 

  23. Pan, B.: Reliability-guided digital image correlation for image deformation measurement. Appl. Opt. 48, 1535–1542 (2009)

    Article  Google Scholar 

  24. Chang, S., Wang, C., Xiong, C., et al.: Nanoscale in-plane displacement evaluation by AFM scanning and digital image correlation processing. Nanotechnology 16, 344–349 (2005)

    Article  Google Scholar 

  25. Yoneyama, S., Kitagawa, A., Kitamura, K., et al.: In-plane displacement measurement using digital image correlation with Lens distortion correction. JSME Int. J. Series A-solid Mech. Mater. Eng. 49, 458–467 (2006)

    Article  Google Scholar 

  26. Kawahashi, M., Hirahara, H.: Velocity and density field measurements by digital speckle method. Opt. Laser Technol. 32, 575–582 (2000)

    Article  Google Scholar 

  27. Lu, H.M., Cary, P.D.: Deformation measurements by digital image correlation: implementation of a second-order displacement gradient. Exp. Mech. 40, 393–400 (2000)

    Article  Google Scholar 

  28. Bornert, M., Bremand, F., Doumalin, P., et al.: Assessment of digital image correlation measurement errors: methodology and results. Exp. Mech. 49, 353–370 (2009)

    Article  Google Scholar 

  29. Chen, J., Zhan, N., Zhang, X., et al.: Improved extended digital image correlation for crack tip deformation measurement. Opt. Lasers Eng. 65, 103–109 (2015)

    Article  Google Scholar 

  30. Rohde, S., Bennett, A.I., Harris, K.L., et al.: Measuring contact mechanics deformations using DIC through a transparent medium. Exp. Mech. 57, 1445–1455 (2017)

    Article  Google Scholar 

  31. Pan, B., Yu, L., Zhang, Q., et al.: Review of single-camera stereo-digital image correlation techniques for full-field 3D shape and deformation measurement. Sci. China Technol. Sci. 61, 2–20 (2018)

    Article  Google Scholar 

  32. Raghuwanshi, N.K., Parey, A.: Experimental measurement of spur gear mesh stiffness using digital image correlation technique. Measurement 111, 93–104 (2017)

    Article  Google Scholar 

  33. Malowany, K., Malesa, M., Kowaluk, T., et al.: Multi-camera digital image correlation method with distributed fields of view. Opt. Lasers Eng. 98, 198–204 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Department of Science and Technology (Grant 2016YFB1200505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanpeng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Yang, Z., Chen, Y. et al. Dynamic tensile and failure behavior of bi-directional reinforced GFRP materials. Acta Mech. Sin. 36, 460–471 (2020). https://doi.org/10.1007/s10409-019-00920-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00920-8

Keywords

Navigation