Skip to main content
Log in

Perturbation finite element solution for chemo-elastic boundary value problems under chemical equilibrium

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Modeling the elastic behavior of solids in energy conversion and storage devices such as fuel cells and lithium-ion batteries is usually difficult because of the nonlinear characteristics and the coupled chemo-mechanical behavior of these solids. In this work, a perturbation finite element (FE) formulation is developed to analyze chemo-elastic boundary value problems (BVPs) under chemical equilibrium. The perturbation method is applied to the FE equations because of the nonlinearity in the chemical potential expression as a function of solute concentration. The compositional expansion coefficient is used as the perturbation parameter. After the perturbation expansion, a system of partial differential equations for the displacement and dimensionless solute concentration functions is obtained and solved in consecutive steps. The presence of a numerical solution enables modeling 3D chemo-elastic solids, such as battery electrodes or ionic gels, of any geometric shape with defects of different shapes. The proposed method is tested in several numerical examples such as plates with circular or elliptical holes, and cracks. The numerical examples showed how the shape of the defect can change the distribution of solute concentration around the defect. Cracks in chemo-elastic solids create sharp peaks in solute concentration around crack tips, and the intensity of these peaks increases as the far field solute concentration decreases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Haftbaradaran, H., Qu, J.: Two-dimensional chemo-elasticity under chemical equilibrium. Int. J. Sol. Struct. 56–57, 126–135 (2015)

    Article  Google Scholar 

  2. Gao, X., Fang, D., Qu, J.: A chemo-mechanics framework for elastic solids with surface stress. Proc. R. Soc. A 471, 20150366 (2015)

    Article  Google Scholar 

  3. Swaminathan, N., Qu, J., Sun, Y.: An electrochemical theory of defects in ionic solids, part I. Theory. Philos. Mag. 87, 1705–1721 (2007)

    Article  Google Scholar 

  4. Swaminathan, N., Qu, J., Sun, Y.: An electrochemical theory of defects in ionic solids, part II. Examples. Philos. Mag. 87, 1723–1742 (2007)

    Article  Google Scholar 

  5. Cui, Z.W., Gao, F., Qu, J.M.: On the perturbation solution of interface-reaction controlled diffusion in solids. Acta Mech. Sin. 28, 1049–1057 (2012)

    Article  Google Scholar 

  6. Cui, Z.W., Gao, F., Qu, J.M.: Interface-reaction controlled diffusion in binary solids with applications to lithiation of silicon in lithium-ion batteries. J. Mech. Phys. Sol. 61, 293–310 (2013)

    Article  MathSciNet  Google Scholar 

  7. Burch, D., Bazant, M.Z.: Size-dependent spinodal and miscibility gaps for intercalation in nanoparticles. Nano Lett. 9, 3795–3800 (2009)

    Article  Google Scholar 

  8. Bai, P., Cogswell, D.A., Bazant, M.Z.: Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett. 11, 4890–4896 (2011)

    Article  Google Scholar 

  9. Kienzler, R., Fisher, F.D., Fratzl, P.: On energy changes due to the formation of a circular hole in an elastic plate. Arch. Appl. Mech. 76, 681–697 (2006)

    Article  Google Scholar 

  10. Fratzl, P., Fisher, F.D., Svoboda, J., et al.: A kinematic model of the transformation of a micropatterned amorphous precursor into a porous single crystal. Acta Biomater. 6, 1001–1005 (2010)

    Article  Google Scholar 

  11. Liu, M.: Distributions of charged defects in mixed ionic-electronic conductors: I. General equations for homogeneous mixed ionic-electronic conductors. J. Electrochem. Soc. 144, 1813–1834 (1997)

    Article  Google Scholar 

  12. Chen, Z.: Comparison of the mobile charge distribution models in mixed ionic-electronic conductors. J. Electrochem. Soc. 151, A1576–A1583 (2004)

    Article  Google Scholar 

  13. Chen, J., Yu, P., Wang, H., et al.: An ABAQUS implementation of electrochemomechanical theory for mixed ionic electronic conductors. Solid State Ion. 319, 34–45 (2018)

    Article  Google Scholar 

  14. Li, Y., Zhang, K., Zheng, B., et al.: Effect of local deformation on the coupling between diffusion and stress in lithium-ion battery. Int. J. Sol. Struct. 87, 81–89 (2016)

    Article  Google Scholar 

  15. Ji, L., Guo, Z.: Analytical modeling and simulation of porous electrodes: Li-ion distribution and diffusion-induced stress. Acta Mech. Sin. 34(1), 187–198 (2018)

    Article  Google Scholar 

  16. Drozdov, A.D.: A model for the mechanical response of electrode particles induced by lithium diffusion in Li-ion batteries. Acta Mech. 225, 2987–3005 (2014)

    Article  MathSciNet  Google Scholar 

  17. Haftbaradaran, H.: Chemo-mechanical modeling of elastic thin-film electrodes on elastic substrates under chemical equilibrium. Int. J. Solid Struct. 91, 157–168 (2016)

    Article  Google Scholar 

  18. Suo, Y.H., Shen, S.: General approach on chemistry and stress coupling effects during oxidation. J. Appl. Phys. 114, 164905 (2013)

    Article  Google Scholar 

  19. Suo, Y.H., Shen, S.: Residual stress analysis due to chemomechanical coupled effect, intrinsic strain and creep deformation during oxidation. Oxid. Met. 84(3–4), 413–427 (2015)

    Article  Google Scholar 

  20. Suo, Y.H., Shen, S.: Coupling diffusion–reaction–mechanics model for oxidation. Acta Mech. 226(10), 3375–3386 (2015)

    Article  MathSciNet  Google Scholar 

  21. Wang, H.L., Suo, Y.H., Shen, S.: Reaction–diffusion–stress coupling effect in inelastic oxide scale during oxidation. Oxid. Met. 83, 507–519 (2015)

    Article  Google Scholar 

  22. Buonsanti, M., Fosdick, R., Royer-Carfagni, G.: Chemomechanical equilibrium of bars. J. Elast. 84, 167–188 (2006)

    Article  MathSciNet  Google Scholar 

  23. Wang, X.-Q., Yang, Q.-S.: A general solution for one dimensional chemo-mechanical coupled hydrogel rod. Acta. Mech. Sin. 34(2), 392–399 (2018)

    Article  MathSciNet  Google Scholar 

  24. Fowler, R.H., Guggenheim, E.A.: Statistical Thermodynamics. Cambridge University Press, Cambridge (1939)

    MATH  Google Scholar 

  25. Larche, F., Cahn, J.W.: A linear theory of thermochemical equilibrium of solids under stress. Acta Metall. 21, 1051–1063 (1973)

    Article  Google Scholar 

  26. Larche, F., Cahn, J.W.: The interactions of composition and stress in crystalline solids. Acta Metall. 33, 331–357 (1985)

    Article  Google Scholar 

  27. Sofronis, P.: The influence of mobility of dissolved hydrogen on the elastic response of a metal. J. Mech. Phys. Solids 43, 1385–1407 (1995)

    Article  Google Scholar 

  28. Hu, S.L., Shen, S.: Non-equilibrium thermodynamics and variational principles for fully coupled thermal mechanical chemical processes. Acta Mech. 224, 2895–2910 (2013)

    Article  MathSciNet  Google Scholar 

  29. Yu, P.F., Shen, S.: A fully coupled theory and variational principle for thermal-electrical-chemical-mechanical processes. ASME J. Appl. Mech. 81, 111005 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The first and third authors acknowledge the support of California State University, Northridge (CSUN). The second and fourth authors acknowledge the support of the Slovak Science and Technology Assistance Agency registered under Number APVV-14-0216.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter L. Bishay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishay, P.L., Sladek, J., Fabry, N. et al. Perturbation finite element solution for chemo-elastic boundary value problems under chemical equilibrium. Acta Mech. Sin. 35, 981–991 (2019). https://doi.org/10.1007/s10409-019-00871-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00871-0

Keywords

Navigation