Skip to main content
Log in

Numerical study of clathrin-mediated endocytosis of nanoparticles by cells under tension

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

In this study, a three-dimensional mathematical model was used to study the contribution of clathrins during the process of cellular uptake of spherical nanoparticles under different membrane tensions. The clathrin-coated pit (CCP) that forms around the inward budding of the cell membrane was modeled as a vesicle with bending rigidity. An optimization algorithm was proposed for minimizing the total energy of the system, which comprises the deforming nanoparticle, receptor–ligand bonds, cell membrane, and CCP, in which way, the profile of the system is acquired. The results showed that the CCP enable full wrapping of the nanoparticles at various membrane tensions. When the cell membrane tension increases, the total deformation energy also increases, but the ratio of CCP bending to the minimum value of the total energy of the system decreases. The results also showed that the diameter of the endocytic vesicles determined by the competition between the stretching of the cell membrane and confinement of the coated pits are much larger than the nanoparticles, which is quit different as the results in passive endocytosis that is not facilitated by the CCPs. The present results indicate that variations of tension on cell membranes constitutes a biophysical marker for understanding the size distribution of CCPs observed in experiments. The present results also suggest that the early abortion of endocytosis is related to that the receptor–ligand bonds cannot generate adequate force to wrap the nanoparticles into the cell membrane before the clathrins respond to support the endocytic vesicles. Correspondingly, late abortion may relate to the inability of CCPs to confine the nanoparticles until the occurrence of the necking stage of endocytosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Cann, A.J.: Principles of Molecular Virology: Trends in Biochemical Sciences. Academic Press, London (1993)

    Google Scholar 

  2. Stahl, P., Schwartz, A.L.: Receptor-mediated endocytosis. J. Clin. Invest. 77, 657–662 (1986)

    Article  Google Scholar 

  3. Goldstein, J.L., Anderson, R.G.W., Brown, M.S.: Coated pits, coated vesicles and receptor-mediated endocytosis. Nature 279, 679–685 (1979)

    Article  Google Scholar 

  4. Kihlström, E., Nilsson, L.: Endocytosis of Salmonella typhimurium 395 MS and MR10 by HeLa cells. Acta Pathol. Microbiol. Scand. Sect. B Microbiol. 85B, 322–328 (2009)

    Google Scholar 

  5. Tortorella, S., Karagiannis, T.C.: Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J. Membr. Biol. 247, 291–307 (2014)

    Article  Google Scholar 

  6. Tanaka, T., Shiramoto, S., Miyashita, M., et al.: Tumor targeting based on the effect of enhanced permeability and retention (EPR) and the mechanism of receptor-mediated endocytosis (RME). Int. J. Pharm. 277, 39–61 (2004)

    Article  Google Scholar 

  7. Kirchhausen, T., Owen, D., Harrison, S.C.: Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 6, a016725 (2014)

    Article  Google Scholar 

  8. Diz-Muñoz, A., Fletcher, D.A., Weiner, O.D.: Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol. 23, 47–53 (2013)

    Article  Google Scholar 

  9. Oh, M.J., Kuhr, F., Byfield, F., et al.: Micropipette aspiration of substrate-attached cells to estimate cell stiffness. J. Vis. Exp. 67, e3886 (2012)

    Google Scholar 

  10. Boulant, S., Kural, C., Zeeh, J.C., et al.: Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13, 1124–1131 (2011)

    Article  Google Scholar 

  11. Tan, X., Heureaux, J., Liu, A.P.: Cell spreading area regulates clathrin-coated pit dynamics on micropatterned substrate. Integr. Biol. 7, 1033–1043 (2015)

    Article  Google Scholar 

  12. Wu, X.S., Elias, S., Liu, H., et al.: Membrane tension inhibits rapid and slow endocytosis in secretory cells. Biophys. J. 113, 2406–2414 (2017)

    Article  Google Scholar 

  13. Gao, H., Shi, W., Freund, L.B.: Mechanics of receptor-mediated endocytosis. Proc. Natl. Acad. Sci. 102, 9469–9474 (2005)

    Article  Google Scholar 

  14. Yi, X., Shi, X., Gao, H.: Cellular uptake of elastic nanoparticles. Phys. Rev. Lett. 107, 098101 (2011)

    Article  Google Scholar 

  15. Decuzzi, P., Ferrari, M.: The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials 28, 2915–2922 (2007)

    Article  Google Scholar 

  16. Liu, X., Liu, Y., Gong, X., et al.: A numerical study of passive receptor-mediated endocytosis of nanoparticles: the effect of mechanical properties. Comput. Model Eng. Sci. 116, 281–300 (2018)

    Google Scholar 

  17. Dmitrieff, S., Nédélec, F.: Membrane mechanics of endocytosis in cells with turgor. PLoS Comput. Biol. 11, e1004538 (2015)

    Article  Google Scholar 

  18. Irajizad, E., Walani, N., Veatch, S.L., et al.: Clathrin polymerization exhibits high mechano-geometric sensitivity. Soft Matter 13, 1455–1462 (2017)

    Article  Google Scholar 

  19. Liu, J., Kaksonen, M., Drubin, D.G., et al.: Endocytic vesicle scission by lipid phase boundary forces. Proc. Natl. Acad. Sci. 103, 10277–10282 (2006)

    Article  Google Scholar 

  20. Choi, C.H.J., Alabi, C.A., Webster, P., et al.: Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proc. Natl. Acad. Sci. 107, 1235–1240 (2010)

    Article  Google Scholar 

  21. Marsh, M.: Clathrin-coated vesicles and receptor-mediated endocytosis. In: Zheng, Y. (ed.) Encyclopedia of Life Sciences. Wiley, Chichester (2001)

    Google Scholar 

  22. Brett, T.J., Traub, L.M.: Molecular structures of coat and coat-associated proteins: function follows form. Curr. Opin. Cell Biol. 18, 395–406 (2006)

    Article  Google Scholar 

  23. Jin, A.J., Prasad, K., Smith, P.D., et al.: Measuring the elasticity of clathrin-coated vesicles via atomic force microscopy. Biophys. J. 90, 3333–3344 (2006)

    Article  Google Scholar 

  24. Skalak, R., Tozeren, A., Zarda, R.P., et al.: Strain energy function of red blood cell membranes. Biophys. J. 13, 245–264 (1973)

    Article  Google Scholar 

  25. David, F., Leibler, S.: Vanishing tension of fluctuating membranes. J. Phys. II 1, 959–976 (1991)

    Google Scholar 

  26. Dembo, M.: On peeling an adherent cell from a surface. Lect. Math. Life Sci. Some Math. Probl. Biol. 24, 51–77 (1994)

    MATH  Google Scholar 

  27. Helfrich, W.: Elastic properties of lipid bilayers: theory and possible experiments. Z. Naturforsch. C 28, 693–703 (1973)

    Article  Google Scholar 

  28. Liu, X., Liu, Y., Gong, X., et al.: A numerical study of passive receptor-mediated endocytosis of nanoparticles: the effect of mechanical properties. Comput. Model. Eng. Sci. 116, 281–300 (2018)

    Google Scholar 

  29. Hochmuth, R.M., Evans, C.A., Wiles, H.C., et al.: Mechanical measurement of red cell membrane thickness. Science 220, 101–102 (1983)

    Article  Google Scholar 

  30. Cheng, Y., Zak, O., Aisen, P., et al.: Structure of the human transferrin receptor-transferrin complex. Cell 116, 565–576 (2004)

    Article  Google Scholar 

  31. Moy, V.T., Florin, E.L., Gaub, H.E.: Intermolecular forces and energies between ligands and receptors. Science 266, 257–259 (1994)

    Article  Google Scholar 

  32. Sun, J., Zhang, L., Wang, J., et al.: Tunable rigidity of (polymeric core)-(lipid shell) nanoparticles for regulated cellular uptake. Adv. Mater. 27, 1402–1407 (2015)

    Article  Google Scholar 

  33. Chou, T.: Stochastic entry of enveloped viruses: fusion versus endocytosis. Biophys. J. 93, 1116–1123 (2007)

    Article  Google Scholar 

  34. Chithrani, B.D., Ghazani, A.A., Chan, W.C.W.: Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6, 662–668 (2006)

    Article  Google Scholar 

  35. Yi, X., Gao, H.: Kinetics of receptor-mediated endocytosis of elastic nanoparticles. Nanoscale 9, 454–463 (2017)

    Article  Google Scholar 

  36. Ehrlich, M., Boll, W., van Oijen, A., et al.: Endocytosis by random initiation and stabilization of clathrin-coated pits. Cell 118, 591–605 (2004)

    Article  Google Scholar 

  37. Schmid, S.L.: Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997)

    Article  Google Scholar 

  38. Heuser, J.: Three-dimensional visualization of coated vesicle formation in fibroblasts. J. Cell Biol. 84, 560–583 (1980)

    Article  Google Scholar 

  39. Raucher, D., Sheetz, M.P.: Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol. 144, 497–506 (1999)

    Article  Google Scholar 

  40. Weigel, A.V., Tamkun, M.M., Krapf, D.: Quantifying the dynamic interactions between a clathrin-coated pit and cargo molecules. Proc. Natl. Acad. Sci. 110, E4591–E4600 (2013)

    Article  Google Scholar 

  41. Avinoam, O., Schorb, M., Beese, C.J., et al.: Endocytic sites mature by continuous bending and remodeling of the clathrin coat. Science 348, 1369–1372 (2015)

    Article  Google Scholar 

  42. Loerke, D., Mettlen, M., Yarar, D., et al.: Cargo and dynamin regulate clathrin-coated pit maturation. PLoS Biol. 7, e1000057 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant 11872040) and the Natural Science and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Yang, H., Liu, Y. et al. Numerical study of clathrin-mediated endocytosis of nanoparticles by cells under tension. Acta Mech. Sin. 35, 691–701 (2019). https://doi.org/10.1007/s10409-019-00839-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-019-00839-0

Keywords

Navigation