Skip to main content
Log in

Frictionally excited thermoelastic dynamic instability of functionally graded materials

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The perturbation method is applied to investigate the frictionally excited thermoelastic dynamic instability (TEDI) of a functionally graded material (FGM) coating in half-plane sliding against a homogeneous half-plane. We assume that the thermoelastic properties of the FGM vary exponentially with thickness. We also examine the effects of the gradient index, sliding speed, and friction coefficient on the TEDI for various material combinations. The transverse normal stress for two different coating structures is calculated. Furthermore, the frictional sliding stability of two different coating structures is analyzed. The obtained results show that use of FGM coatings can improve the TEDI of this sliding system and reduce the possibility of interfacial failure by controlling the interfacial tensile stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Suresh, S., Mortensen, A.: Fundamentals of functionally graded materials: processing and thermomechanical behavior of graded metals and metal-ceramic composites. IOM Communications Ltd., London (1998)

    Google Scholar 

  2. Guler, M.A.: Contact mechanics of FGM coatings. Ph. D. Thesis, Lehigh University (2001)

  3. Guler, M.A., Erdogan, F.: Contact mechanics of graded coatings. Int. J. Solids Struct. 41, 3865–3889 (2004)

    Article  MATH  Google Scholar 

  4. Guler, M.A., Erdogan, F.: Contact mechanics of two deformable elastic solids with graded coatings. Mech. Mater. 38, 633–647 (2006)

    Article  Google Scholar 

  5. Guler, M.A., Erdogan, F.: The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings. Int. J. Mech. Sci. 49, 161–182 (2007)

    Article  Google Scholar 

  6. El-Borgi, S., Abdelmousla, R., Keer, L.: A receding contact plane problem between a functionally graded layer and a homogeneous substrate. Int. J. Solids Struct. 43, 658–674 (2006)

    Article  MATH  Google Scholar 

  7. Elloumi, R., Kallel-Kamoun, I., El-Borgi, S.: A fully coupled partial slip contact problem in a graded half-plane. Mech. Mater. 42, 417–428 (2010)

    Article  Google Scholar 

  8. Ke, L.L., Wang, Y.S.: Fretting contact of two dissimilar elastic bodies with functionally graded coatings. Mech. Adv. Mater. Struct. 17, 433–447 (2010)

    Article  Google Scholar 

  9. Suresh, S., Olsson, M., Padture, N.P., et al.: Engineering the resistance to sliding contact damage through controlled gradients in elastic properties at contact surfaces. Acta Mater. 47, 3915–3926 (1999)

    Article  Google Scholar 

  10. Pender, D.C., Padture, N.P., Giannakopoulos, A.E., et al.: Gradients in elastic modulus for improved contact-damage resistance. Part I: the silicon nitride-oxy nitride glass system. Acta Mater. 49, 3255–3262 (2001)

    Article  Google Scholar 

  11. Suresh, S.: Graded materials for resistance to contact deformation and damage. Science 292, 2447–2451 (2001)

    Article  Google Scholar 

  12. Aizikovich, S.M., Alexandrov, V.M., Kalker, J.J., et al.: Analytical solution of the spherical indentation problem for a half-space with gradients with the depth elastic properties. Int. J. Solids Struct. 39, 2745–2772 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Choi, H.J., Paulino, G.H.: Interfacial cracking in a graded coating/substrate system loaded by a frictional sliding flat punch. Proc. R. Soc. A 466, 853–880 (2010)

    Article  MATH  Google Scholar 

  14. Childlow, S.J., Teodorescu, M., Vaughan, N.D.: Predicting the deflection and sub-surface stress field within two-dimensional inhomogeneously elastic bonded layered solids under pressure. Int. J. Solids Struct. 48, 3243–3256 (2011)

    Article  Google Scholar 

  15. Aizikovich, S.M., Vasil’ev, A.S., Krenev, L.I., et al.: Contact problems for functionally graded materials of complicated structure. Mech. Compos. Mater. 47, 539–548 (2011)

    Article  Google Scholar 

  16. Comez, I.: Contact problem of a functionally graded layer resting on a Winkler foundation. Acta Mech. 224, 2833–2843 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Childlow, S.J., Teodorescu, M.: Sliding contact problems involving inhomogeneous materials comprising a coating-transition layer-substrate and a rigid punch. Int. J. Solids Struct. 51, 1931–1945 (2014)

    Article  Google Scholar 

  18. Liu, T.J., Xing, Y.M.: Analysis of graded coatings for resistance to contact deformation and damage based on a new multi-layer model. Int. J. Mech. Sci. 81, 158–164 (2014)

    Article  Google Scholar 

  19. Choi, H.J., Paulino, G.H.: Thermoelastic contact mechanics for a flat punch sliding over a graded coating/substrate system with frictional heat generation. J. Mech. Phys. Solids 56, 1673–1692 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Barik, S.P., Kanoria, M., Chaudhuri, P.K.: Steady state thermoelastic contact problem in a functionally graded material. Int. J. Eng. Sci. 46, 775–789 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shahzamanian, M.M., Sahari, B.B., Bayat, M.: Transient and thermal contact analysis for the elastic behavior of functionally graded brake disks due to mechanical and thermal loads. Mater. Des. 31, 4655–4665 (2010)

    Article  Google Scholar 

  22. Shahzamanian, M.M., Sahari, B.B., Bayat, M., et al.: Finite element analysis of thermoelastic contact problem in functionally graded axisymmetric brake disks. Compos. Struct. 92, 1591–1602 (2010)

    Article  Google Scholar 

  23. Chen, P.J., Chen, S.H., Peng, Z.: Thermo-contact mechanics of a rigid cylindrical punch sliding on a finite graded layer. Acta Mech. 223, 2647–2665 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chen, P.J., Chen, S.H.: Thermo-mechanical contact behavior of a finite graded layer under a sliding punch with heat generation. Int. J. Solids Struct. 50, 1109–1119 (2013)

    Google Scholar 

  25. Dow, T.A., Burton, R.A.: Thermoelastic instability of sliding contact in the absence of wear. Wear 19, 315–328 (1972)

    Article  Google Scholar 

  26. Jang, Y.H., Ahn, S.: Frictionally-excited thermoelastic instability in functionally graded material. Wear 262, 1102–1112 (2007)

    Article  Google Scholar 

  27. Lee, S., Jang, Y.H.: Effect of functionally graded material on frictionally excited thermoelastic instability. Wear 266, 139–146 (2009)

    Article  Google Scholar 

  28. Lee, S., Jang, Y.H.: Frictionally excited thermoelastic instability in a thin layer of functionally graded material sliding between half-planes. Wear 267, 1715–1722 (2009)

    Article  Google Scholar 

  29. Hernik, S.: Modeling FGM brake disk against global thermoelastic instability (hot-spot). Math. Mech. 89, 88–106 (2009)

    MATH  Google Scholar 

  30. Afferrante, L., Ciavarella, M., Barber, J.R.: Sliding thermoelasto-dynamic instability. Proc. R. Soc. 462, 2161–2176 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Afferrante, L., Ciavarella, M., Barber, J.R.: A note on thermoelastodynamic instability (TEDI) for a 1D elastic layer: force control. Int. J. Solids Struct. 44, 1380–1390 (2006)

    Article  MATH  Google Scholar 

  32. Afferrante, L., Ciavarella, M., Barber, J.R.: “Frictionless” and “frictional” ThermoElastic dynamic instability (TEDI) of sliding contacts. J. Mech. Phys. Solids 54, 2330–2353 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Afferrante, L., Ciavarella, M.: Thermo-elastic dynamic instability (TEDI) in frictional sliding of a half plane against a rigid non-conducting wall. J. Appl. Mech. 74, 875–884 (2006)

    Article  Google Scholar 

  34. Afferrante, L., Ciavarella, M., Barber, J.R.: Thermo-elastic dynamic instability (TEDI) in frictional sliding of two elastic half-spaces. J. Mech. Phys. Solids 55, 744–764 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Liu, J., Wang, Y.S., Ke, L.L., et al.: Thermo-elastic dynamic instability of an elastic half-plane sliding against a coated half-plane. Int. J. Mech. Sci. 117, 275–285 (2016)

    Article  Google Scholar 

  36. Liu, J., Wang, Y.S., Ke, L.L., et al.: Dynamic instability of an elastic solid sliding against a functionally graded material coated half-plane. Int. J. Mech. Sci. 89, 323–331 (2014)

    Article  Google Scholar 

  37. Mao, J.J., Ke, L.L., Wang, Y.S.: Thermoelastic contact instability of a functionally graded layer and a homogeneous half-plane. Int. J. Solids Struct. 51, 3962–3972 (2014)

    Article  Google Scholar 

  38. Mao, J.J., Ke, L.L., Wang, Y.S.: Thermoelastic contact instability of a functionally graded layer interacting with a homogeneous layer. Int. J. Mech. Sci. 99, 218–227 (2015)

    Article  Google Scholar 

  39. Hills, D.A., Baber, J.R.: Steady motion of an insulating rigid flat-ended punch over a thermally conducting half-plane. Wear 102, 15–22 (1985)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grants 11502089 and 11725207).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. L. Ke.

Appendix

Appendix

$$ \eta_{1j} = \sum\limits_{k = 1}^{4} {{{\left( {\gamma_{1k} - f\gamma_{2k} } \right)F_{kj} {\text{e}}^{{s_{0k} h}} } / {\delta_{k} }}} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} j = 1,2, $$
(A.1)
$$ \begin{aligned} & \delta_{k} = \sum\limits_{k = 1}^{4} {\left( {f\gamma_{2k} - \gamma_{1k} } \right)F_{k3} {\text{e}}^{{s_{0k} h}} } \\ &\quad - f\beta_{0}^{2} {\text{e}}^{{\eta^{\prime}h}} \left( {d_{05} F_{53} {\text{e}}^{{s_{05} h}} + d_{06} F_{63} {\text{e}}^{{s_{06} h}} } \right) \\ & \quad {\kern 1pt} + \sum\limits_{k = 5}^{6} \left\{ f\left[ {\beta_{0}^{2} a_{0k} \left( {s_{0k} + \eta^{\prime}} \right) + {\text{i}}\left( {\beta_{0}^{2} - 2} \right)} \right]\right.\\ &\quad \left.- \left( {s_{0k} + \eta^{\prime} + {\text{i}}a_{0k} } \right) \right\}F_{k3} {\text{e}}^{{\left( {s_{0k} + \eta^{\prime}} \right)h}} , \\ \end{aligned} $$
(A.2)
$$ r_{1k} = s_{0k} + {\text{i}}a_{0k} ,\quad r_{2k} = \beta_{0}^{2} a_{0k} s_{0k} + {\text{i}}\left( {\beta_{0}^{2} - 2} \right), $$
(A.3)
$$ \begin{aligned} &l_{1j} = {\text{e}}^{{ - \varepsilon^{\prime}h}} \frac{{m_{1j} m_{24} - m_{2j} m_{14} }}{{m_{13} m_{24} - m_{23} m_{14} }},\\ & l_{2j} = {\text{e}}^{{ - \varepsilon^{\prime}h}} \frac{{m_{1j} m_{23} - m_{2j} m_{13} }}{{m_{14} m_{23} - m_{24} m_{13} }},{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} j = 1,2, \end{aligned} $$
(A.4)
$$ \begin{aligned} &m_{1j} = \sum\limits_{k = 1}^{4} {a_{0k} F_{kj} {\text{e}}^{{s_{0k} h}} }\\ &\quad + {\kern 1pt} \left[ {\sum\limits_{k = 1}^{4} {a_{0k} F_{k3} {\text{e}}^{{s_{0k} h}} } + a_{05} F_{53} {\text{e}}^{{\left( {s_{05} + \eta^{\prime}} \right)h}} + a_{06} F_{63} {\text{e}}^{{\left( {s_{06} + \eta^{\prime}} \right)h}} } \right]\\ &\quad\eta_{1j} ,{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} j = 1,2, \end{aligned} $$
(A.5)
$$ \begin{aligned}& m_{13} = a_{21} {\text{e}}^{{s_{21} h}} + \eta_{21} a_{23} {\text{e}}^{{s_{23} h}} ,\\ & m_{14} = a_{22} {\text{e}}^{{s_{22} h}} + \eta_{22} a_{23} {\text{e}}^{{s_{23} h}}, \end{aligned} $$
(A.6)
$$ \begin{aligned} & m_{2j} = \left( {{{\mu_{0} } \mathord{\left/ {\vphantom {{\mu_{0} } {\mu_{2} }}} \right. \kern-0pt} {\mu_{2} }}} \right)\sum\limits_{k = 1}^{4} {r_{2k} F_{kj} {\text{e}}^{{s_{0k} h}} } + \left( {{{\mu_{0} } \mathord{\left/ {\vphantom {{\mu_{0} } {\mu_{2} }}} \right. \kern-0pt} {\mu_{2} }}} \right)\\ &\quad \left\{ \sum\limits_{k = 1}^{4} {r_{2k} F_{k3} {\text{e}}^{{s_{0k} h}} } + \sum\limits_{k = 5}^{6} \left[\beta_{0}^{2} a_{0k} \left( {s_{0k} + \eta^{\prime}} \right)\right. \right.\\ & \quad \left.\left. + \,{\text{i}}\left( {\beta_{0}^{2} - 2} \right) \right]F_{k3} {\text{e}}^{{\left( {s_{0k} + \eta^{\prime}} \right)h}} \right\}\eta_{1j} \\ & \quad - \beta_{0}^{2} \left( {{{\mu_{0} } \mathord{\left/ {\vphantom {{\mu_{0} } {\mu_{2} }}} \right. \kern-0pt} {\mu_{2} }}} \right)\left[ d_{05} F_{53} {\text{e}}^{{\left( {s_{05} + \eta^{\prime}} \right)}}\right.\\ &\quad \left. +\, d_{06} F_{63} {\text{e}}^{{\left( {s_{06} + \eta^{\prime}} \right)}} \right]\eta_{1j} ,\quad j = 1,2, \\ \end{aligned} $$
(A.7)
$$\begin{aligned} & m_{23} = \left[ {\beta_{2}^{2} a_{21} s_{21} + {\text{i}}\left( {\beta_{2}^{2} - 2} \right)} \right]{\text{e}}^{{s_{21} h}} \\ &\quad + \left[ {\beta_{2}^{2} a_{23} s_{23} + {\text{i}}\left( {\beta_{2}^{2} - 2} \right) - \beta_{2}^{2} d_{23} } \right]\eta_{21} {\text{e}}^{{s_{23} h}}, \end{aligned} $$
(A.8)
$$ \begin{aligned} &m_{24} = \left[ {\beta_{2}^{2} s_{22} a_{22} + {\text{i}}\left( {\beta_{2}^{2} - 2} \right)} \right]{\text{e}}^{{s_{22} h}} \\ &\quad + \left[ {\beta_{2}^{2} s_{23} a_{23} + {\text{i}}\left( {\beta_{2}^{2} - 2} \right) - \beta_{2}^{2} d_{23} } \right]\eta_{22} {\text{e}}^{{s_{23} h}}. \end{aligned} $$
(A.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Ke, L.L. & Wang, Y.S. Frictionally excited thermoelastic dynamic instability of functionally graded materials. Acta Mech. Sin. 35, 99–111 (2019). https://doi.org/10.1007/s10409-018-0804-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0804-x

Keywords

Navigation