Skip to main content
Log in

Dual-level stress plateaus in honeycombs subjected to impact loading: perspectives from bucklewaves, buckling and cell-wall progressive folding

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Dual-level stress plateaus (i.e., relatively short peak stress plateaus, followed by prolonged crushing stress plateaus) in metallic hexagonal honeycombs subjected to out-of-plane impact loading are characterized using a combined numerical and analytical study, with the influence of the strain-rate sensitivity of the honeycomb parent material accounted for. The predictions are validated against existing experimental measurements, and good agreement is achieved. It is demonstrated that honeycombs exhibit dual-level stress plateaus when bucklewaves are initiated and propagate in cell walls, followed by buckling and progressive folding of the cell walls. The abrupt stress drop from peak to crushing plateau in the compressive stress versus strain curve can be explained in a way similar to the quasi-static buckling of a clamped plate. The duration of the peak stress plateau is more evident for strain-rate insensitive honeycombs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wierzbicki, T.: Crushing analysis of metal honeycombs. Int. J. Impact Eng. 1, 157–174 (1983)

    Article  Google Scholar 

  2. Zhang, J., Ashby, M.F.: The out-of-plane properties of honeycombs. Int. J. Mech. Sci. 34, 475–489 (1992)

    Article  Google Scholar 

  3. Zhang, Q.C., Yang, X.H., Li, P., et al.: Bioinspired engineering of honeycomb structure—using nature to inspire human innovation. Prog. Mater. Sci. 74, 332–400 (2015)

    Article  Google Scholar 

  4. Côté, F., Deshpande, V.S., Fleck, N.A., et al.: The out-of-plane compressive behavior of metallic honeycombs. Mater. Sci. Eng., A 380, 272–280 (2004)

    Article  Google Scholar 

  5. Wilbert, A., Jang, W.Y., Kyriakides, S., et al.: Buckling and progressive crushing of laterally loaded honeycomb. Int. J. Solids Struct. 48, 803–816 (2011)

    Article  MATH  Google Scholar 

  6. Enboa, W., Jiang, W.S.: Axial crush of metallic honeycombs. Int. J. Impact Eng. 19, 439–456 (1997)

    Article  Google Scholar 

  7. Hu, L.L., He, X.L., Wu, G.P., et al.: Dynamic crushing of the circular-celled honeycombs under out-of-plane impact. Int. J. Impact Eng. 75, 150–161 (2015)

    Article  Google Scholar 

  8. Xu, S.Q., Beynon, J.H., Ruan, D., et al.: Experimental study of the out-of-plane dynamic compression of hexagonal honeycombs. Compos. Struct. 94, 2326–2336 (2012)

    Article  Google Scholar 

  9. Sun, D., Zhang, W., Wei, Y.: Mean out-of-plane dynamic plateau stresses of hexagonal honeycomb cores under impact loadings. Compos. Struct. 92, 2609–2621 (2010)

    Article  Google Scholar 

  10. Hou, X.H., Deng, Z.C., Zhang, K.: Dynamic crushing strength analysis of auxetic honeycombs. Acta Mech. Solida Sin. 29, 490–501 (2016)

    Article  Google Scholar 

  11. Calladine, C.R., English, R.W.: Strain-rate and inertia effects in the collapse of two types of energy-absorbing structure. Int. J. Mech. Sci. 26, 689–701 (1984)

    Article  Google Scholar 

  12. Harrigan, J.J., Reid, S.R., Peng, C.: Inertia effects in impact energy absorbing materials and structures. Int. J. Impact Eng. 22, 955–979 (1999)

    Article  Google Scholar 

  13. Ferri, E., Antinucci, E., He, M.Y., et al.: Dynamic buckling of impulsively loaded prismatic cores. J. Mech. Mater. Struct. 1, 1345–1365 (2006)

    Article  Google Scholar 

  14. Tilbrook, M.T., Radford, D.D., Deshpande, V.S., et al.: Dynamic crushing of sandwich panels with prismatic lattice cores. Int. J. Solids Struct. 44, 6101–6123 (2007)

    Article  Google Scholar 

  15. Radford, D.D., Mcshane, G.J., Deshpande, V.S., et al.: Dynamic compressive response of stainless-steel square honeycombs. ASME J. Appl. Mech. 74, 658–667 (2007)

    Article  Google Scholar 

  16. Ferri, E., Deshpande, V.S., Evans, A.G.: The dynamic strength of a representative double layer prismatic core: a combined experimental, numerical, and analytical assessment. ASME J. Appl. Mech. 77, 061011 (2010)

    Article  Google Scholar 

  17. Vaughn, D.G., Hutchinson, J.W.: Bucklewaves. Eur. J. Mech. A: Solids 25, 1–12 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vaughn, D.G., Canning, J.M., Hutchinson, J.W.: Coupled plastic wave propagation and column buckling. ASME J. Appl. Mech. 72, 1–8 (2005)

    Article  MATH  Google Scholar 

  19. Zhang, K., Deng, Z.C., Xu, X.J., et al.: Symplectic analysis for wave propagation of hierarchical honeycomb structures. Acta Mech. Solida Sin. 28, 150–161 (2015)

    Google Scholar 

  20. Hooputra, H., Gese, H., Dell, H., et al.: A comprehensive failure model for crashworthiness simulation of aluminum extrusions. Int. J. Crashworthiness 9, 449–464 (2004)

    Article  Google Scholar 

  21. Cowper, G.R., Symonds, P.S.: Strain-hardening and strain-rate effects in the impact loading of cantilever beams. Division of Applied Mathematics Report No. 28, Brown University, Providence, RI, USA (1957)

  22. Han, B., Qin, K.K., Yu, B., et al.: Honeycomb-corrugation hybrid as a novel sandwich core for significantly enhanced compressive performance. Mater. Des. 93, 271–282 (2016)

    Article  Google Scholar 

  23. Han, B., Wang, W.B., Zhang, Z.J., et al.: Performance enhancement of sandwich panels with honeycomb-corrugation hybrid core. Theor. Appl. Mech. Lett. 6, 54–59 (2016)

    Article  Google Scholar 

  24. Tao, Y., Chen, M., Pei, Y., et al.: Strain-rate effect on mechanical behavior of metallic honeycombs under out-of-plane dynamic compression. ASME J. Appl. Mech. 82, 021007 (2015)

    Article  Google Scholar 

  25. Reid, S.R., Peng, C.: Dynamic uniaxial crushing of wood. Int. J. Impact Eng. 19, 531–570 (1997)

    Article  Google Scholar 

  26. Karagiozova, D., Alves, M.: On the dynamic compression of cellular materials with local structural softening. Int. J. Impact Eng. 108, 153–170 (2017)

    Article  Google Scholar 

  27. Tao, Y., Chen, M., Pei, Y., et al.: Strain-rate effect on the out-of-plane dynamic compressive behavior of metallic honeycombs: experiment and theory. Compos. Struct. 132, 644–651 (2015)

    Article  Google Scholar 

  28. Hou, B., Zhao, H., Pattofatto, S., et al.: Inertia effects on the progressive crushing of aluminum honeycombs under impact loading. Int. J. Solids and Struct. 49, 2754–2762 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 11472209 and 11472208), the China Postdoctoral Science Foundation (Grant 2016M600782), the Postdoctoral Scientific Research Project of Shaanxi Province (Grant 2016BSHYDZZ18), the Zhejiang Provincial Natural Science Foundation of China (Grant LGG18A020001), the Fundamental Research Funds for Xi’an Jiaotong University (Grant xjj2015102), the Jiangsu Province Key Laboratory of High-end Structural Materials (Grant hsm1305), and the Natural Science Basic Research Plan in Shaanxi Province of China (Grant 2018JQ1078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Han or Tian Jian Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Zhao, Z., Zhang, R. et al. Dual-level stress plateaus in honeycombs subjected to impact loading: perspectives from bucklewaves, buckling and cell-wall progressive folding. Acta Mech. Sin. 35, 70–77 (2019). https://doi.org/10.1007/s10409-018-0800-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0800-1

Keywords

Navigation