Skip to main content
Log in

A modified stiffness spreading method for layout optimization of truss structures

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The stiffness spreading method (SSM) was initially proposed for layout optimization of truss structures, in which an artificial elastic material of low modulus is uniformly distributed in the design domain to create connections between discrete members. In this paper, a modified stiffness spreading method is proposed by replacing the artificial elastic material with auxiliary bars to connect real members of the truss structure. Since the background continuum mesh for the elastic material is no longer required, the computational cost is significantly reduced. Like SSM, the new method is advantageous in that an initial design may consist of disconnected bars allocated in the design domain, and mathematical programming methods can be applied for the efficient solution of the formulated optimization problem. A number of solution strategies are also developed to achieve more practical designs with lower computational cost. Numerical examples of both 2-D and 3-D truss structures are presented to demonstrate the feasibility, robustness and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Michell, A.G.M.: The limits of economy of material in frame-structures. Philos. Mag. 8, 589–597 (1904)

    Article  Google Scholar 

  2. Dorn, W.S., Gomory, R.E., Greenberg, H.J.: Automatic design of optimal structures. J. de Meca. 3, 25–52 (1964)

    Google Scholar 

  3. Rozvany, G., Bendsoe, M.P., Kirsch, U.: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119 (1995)

    Article  Google Scholar 

  4. Zhou, K., Li, X.: Topology optimization for minimum compliance under multiple loads based on continuous distribution of members. Struct. Multidisc. Optim. 37, 49–56 (2008)

    Article  Google Scholar 

  5. Zegard, T., Paulino, G.H.: GRAND—Ground structure based topology optimization for arbitrary 2D domains using MATLAB. Struct. Multidisc. Optim. 50, 861–882 (2014)

    Article  MathSciNet  Google Scholar 

  6. Zegard, T., Paulino, G.H.: GRAND3-Ground structure based topology optimization for arbitrary 3D domains using MATLAB. Struct. Multidisc. Optim. 52, 1161–1184 (2015)

    Article  Google Scholar 

  7. Gao, G., Liu, Z., Li, Y., et al.: A new method to generate the ground structure in truss topology optimization. Eng. Optimiz. 49, 235–251 (2017)

    Article  MathSciNet  Google Scholar 

  8. Achtziger, W.: On simultaneous optimization of truss geometry and topology. Struct. Multidisc. Optim. 33, 285–304 (2007)

    Article  MathSciNet  Google Scholar 

  9. Pedersen, P.: Optimal joint positions for space trusses. J. Struct. Div. 99, 2459–2476 (1973)

    Google Scholar 

  10. Vanderplaat, G.N., Moses, F.: Automated design of trusses for optimal geometry. J. Struct. Div. 98, 671–690 (1972)

    Google Scholar 

  11. Rule, W.K.: Automatic truss design by optimized growth. J. Struct. Eng. 120, 3063–3070 (1994)

    Article  Google Scholar 

  12. McKeown, J.J.: Growing optimal pin-jointed frames. Struct. Optim. 15, 92–100 (1998)

    Article  Google Scholar 

  13. Bojczuk, D., Mróz, Z.: On optimal design of supports in beam and frame structures. Struct. Optim. 16, 47–57 (1998)

    Article  Google Scholar 

  14. Martínez, P., Martí, P., Querin, O.M.: Growth method for size, topology, and geometry optimization of truss structures. Struct. Multidisc. Optim. 33, 13–26 (2007)

    Article  Google Scholar 

  15. Bendsoe, M.P., Sigmund, O.: Topology Optimization: Theory, Methods, and Applications. Springer, Berlin (2002)

    MATH  Google Scholar 

  16. Ohsaki, M.: Optimization of Finite Dimensional Structures. CRC Press, Boca Raton (2011)

    MATH  Google Scholar 

  17. Stolpe, M.: Truss optimization with discrete design variables: a critical review. Struct. Multidisc. Optim. 53, 349–374 (2016)

    Article  MathSciNet  Google Scholar 

  18. Wei, P., Ma, H., Wang, M.Y.: The stiffness spreading method for layout optimization of truss structures. In: The 6th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems. Kyoto, Japan (2010)

  19. Wei, P., Ma, H., Wang, M.Y.: The stiffness spreading method for layout optimization of truss structures. Struct. Multidisc. Optim. 49, 667–682 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wei, P., Shi, J., Ma, H.: Integrated layout optimization design of multi-component systems based on the stiffness spreading method. In: Proceedings of the 7th China–Japan–Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Huangshan, China (2012)

  21. Li, Y., Wei, P., Ma, H.: Integrated optimization of heat- transfer systems consisting of discrete thermal conductors and solid material. Int. J. Heat Mass Trans. 113, 1059–1069 (2017)

    Article  Google Scholar 

  22. Wei, P., Shi, J., Ma, H.: The stiffness spreading method in integrated layout optimization design for multi-component structural systems. In: The 10th World Congress on Structural and Multidisciplinary Optimization May 19-24, Orlando, Florida, USA (2013)

  23. Zegard, T., Paulino, G.H.: Truss layout optimization within a continuum. Struct. Multidisc. Optim. 48, 1–16 (2013)

    Article  Google Scholar 

  24. Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometrically—a new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)

    Article  Google Scholar 

  25. Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)

    Article  Google Scholar 

  26. Zhang, W., Yuan, J., Zhang, J., et al.: A new topology optimization approach based on moving morphable components (MMC) and the ersatz material model. Struct. Multidisc. Optim. 53, 1243–1260 (2016)

    Article  MathSciNet  Google Scholar 

  27. Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput. Methods Appl. Mech. Engrg. 322, 590–614 (2017)

    Article  MathSciNet  Google Scholar 

  28. Zhang, J., Zhang, W.H., Zhu, J.H., et al.: Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis. Comput. Methods Appl. Mech. Engrg. 245–246, 75–89 (2012)

    Article  MathSciNet  Google Scholar 

  29. Zhou, Y., Zhang, W., Zhu, J., et al.: Feature-driven topology optimization method with signed distance function. Comp. Methods Appl. Mech. Engrg. 310, 1–32 (2016)

    Article  MathSciNet  Google Scholar 

  30. Cao, M., Ma, H., Wei, P.: Modified stiffness spreading method for layout optimization of truss structures. In: The 7th China-Japan-Korea Joint Symposium on Optimization of Structural and Mechanical Systems, Huangshan, China (2012)

  31. Svanberg, K.: A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optimiz. 12, 555–573 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support provided by the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant 2016YFB0200605) and the National Natural Science Foundation of China (Grant 11372004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, M., Ma, H. & Wei, P. A modified stiffness spreading method for layout optimization of truss structures. Acta Mech. Sin. 34, 1072–1083 (2018). https://doi.org/10.1007/s10409-018-0776-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0776-x

Keywords

Navigation