Skip to main content
Log in

Study of droplet flow in a T-shape microchannel with bottom wall fluctuation

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Droplet generation in a T-shape microchannel, with a main channel width of 50 \(\upmu \hbox {m}\), side channel width of 25 \(\upmu \hbox {m}\), and height of 50 \(\upmu \hbox {m}\), is simulated to study the effects of the forced fluctuation of the bottom wall. The periodic fluctuations of the bottom wall are applied on the near junction part of the main channel in the T-shape microchannel. Effects of bottom wall’s shape, fluctuation periods, and amplitudes on the droplet generation are covered in the research of this protocol. In the simulation, the average size is affected a little by the fluctuations, but significantly by the fixed shape of the deformed bottom wall, while the droplet size range is expanded by the fluctuations under most of the conditions. Droplet sizes are distributed in a periodic pattern with small amplitude along the relative time when the fluctuation is forced on the bottom wall near the T-junction, while the droplet emerging frequency is not varied by the fluctuation. The droplet velocity is varied by the bottom wall motion, especially under the shorter period and the larger amplitude. When the fluctuation period is similar to the droplet emerging period, the droplet size is as stable as the non-fluctuation case after a development stage at the beginning of flow, while the droplet velocity is varied by the moving wall with the scope up to 80% of the average velocity under the conditions of this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Niu, X., Gielen, F., Edel, J.B., et al.: A microdroplet dilutor for high-throughput screening. Nat. Chem. 3, 437–442 (2011)

    Article  Google Scholar 

  2. Edd, J.F., Di Carlo, D., Humphry, K.J., et al.: Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8, 1262–1264 (2008)

    Article  Google Scholar 

  3. Hafermann, L., Michael Köhler, J.: Small gold nanoparticles formed by rapid photochemical flow-through synthesis using microfluid segment technique. J. Nanopart. Res. 17, 99 (2015)

    Article  Google Scholar 

  4. Rosenfeld, L., Lin, T., Derda, R., et al.: Review and analysis of performance metrics of droplet microfluidics systems. Microfluid. Nanofluidics 16, 921–939 (2014)

    Article  Google Scholar 

  5. Jakiela, S., Makulska, S., Korczyk, P.M., et al.: Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Lab Chip 11, 3603–3608 (2011)

    Article  Google Scholar 

  6. Maan, A.A., Nazir, A., Khan, M.K.I., et al.: Microfluidic emulsification in food processing. J. Food Eng. 147, 1–7 (2015)

    Article  Google Scholar 

  7. Garstecki, P., Fuerstman, M.J., Stone, H.A., et al.: Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up. Lab Chip 6, 437–446 (2006)

    Article  Google Scholar 

  8. Li, Z., Leshansky, A.M., Metais, S., et al.: Step-emulsification in a microfluidic device. Lab Chip 15, 1023–1031 (2015)

    Article  Google Scholar 

  9. Maan, A.A., Schroën, K., Boom, R.: Spontaneous droplet formation techniques for monodisperse emulsions preparation—Perspectives for food applications. J. Food Eng. 107, 334–346 (2011)

    Article  Google Scholar 

  10. Gu, H., Malloggi, F., Vanapalli, S.A., et al.: Electrowetting-enhanced microfluidic device for drop generation. Appl. Phys. Lett. 93, 183507 (2008)

    Article  Google Scholar 

  11. Lee, W., Walker, L.M., Anna, S.L.: Role of geometry and fluid properties in droplet and thread formation processes in planar flow focusing. Phys. Fluids 21, 032103 (2009)

    Article  MATH  Google Scholar 

  12. Steegmans, M.L.J., Schroën, C.G.P.H., Boom, R.M.: Generalised insights in droplet formation at T-junctions through statistical analysis. Chem. Eng. Sci. 64, 3042–3050 (2009)

    Article  Google Scholar 

  13. Christopher, G.F., Noharuddin, N.N., Taylor, J.A., et al.: Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions. Phys. Rev. E 78, 036317 (2008)

    Article  Google Scholar 

  14. Xu, J.H., Li, S.W., Tan, J., et al.: Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid. Nanofluidics 5, 711–717 (2008)

    Article  Google Scholar 

  15. Lee, C.H., Hsiung, S.K., Lee, G.B.: A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids. J. Micromech. Microeng. 17, 1121–1129 (2007)

    Article  Google Scholar 

  16. Pang, Y., Kim, H., Liu, Z., et al.: A soft microchannel decreases polydispersity of droplet generation. Lab Chip 14, 4029–4034 (2014)

    Article  Google Scholar 

  17. Wu, H.W., Huang, Y.C., Wu, C.L., et al.: Exploitation of a microfluidic device capable of generating size-tunable droplets for gene delivery. Microfluid. Nanofluidics 7, 45–56 (2008)

    Article  Google Scholar 

  18. Wang, J.H., Lee, G.B.: Formation of tunable, emulsion micro-droplets utilizing flow-focusing channels and a normally-closed micro-valve. Micromach. 4, 306–320 (2013)

    Article  Google Scholar 

  19. Li, J., Mittal, N., Mak, S.Y., et al.: Perturbation-induced droplets for manipulating droplet structure and configuration in microfluidics. J. Micromech. and Microeng. 25, 084009 (2015)

    Article  Google Scholar 

  20. Huang, S.B., Chang, Y.H., Lee, H.C., et al.: A pneumatically-driven microfluidic system for size-tunable generation of uniform cell-encapsulating collagen microbeads with the ultrastructure similar to native collagen. Biomed. Microdevices 16, 345–354 (2014)

    Article  Google Scholar 

  21. Link, D.R., Anna, S.L., Weitz, D.A., et al.: Geometrically mediated breakup of drops in microfluidic devices. Phys. Rev. Lett. 92, 054503 (2004)

    Article  Google Scholar 

  22. Bedram, A., Moosavi, A.: Droplet breakup in an asymmetric microfluidic T junction. Eur. Phys. J. E 34, 78 (2011)

    Article  Google Scholar 

  23. Ting, T.H., Yap, Y.F., Nguyen, N.T., et al.: Thermally mediated breakup of drops in microchannels. Appl. Phys. Lett. 89, 234101 (2006)

    Article  Google Scholar 

  24. Bedram, A., Darabi, A.E., Moosavi, A., et al.: Numerical investigation of an efficient method (T-junction with valve) for producing unequal-sized droplets in micro- and nano-fluidic systems. J. Fluids Eng. Trans. ASME 137, 9 (2015)

    Google Scholar 

  25. Labrot, V., Schindler, M., Guillot, P., et al.: Extracting the hydrodynamic resistance of droplets from their behavior in microchannel networks. Biomicrofluidics 3, 12804 (2009)

    Article  Google Scholar 

  26. Harshe, Y.M., van Eijk, M.J., Kleijn, C.R., et al.: Scaling of mixing time for droplets of different sizes traveling through a serpentine microchannel. RSC Adv. 6, 98812–98815 (2016)

    Article  Google Scholar 

  27. Liu, Z., Cao, R., Pang, Y., et al.: The influence of channel intersection angle on droplets coalescence process. Exp. Fluids 56, 24 (2015)

    Article  Google Scholar 

  28. Liu, Z., Wang, X., Cao, R., et al.: Droplet coalescence at microchannel intersection chambers with different shapes. Soft Matter 12, 5797–5807 (2016)

    Article  Google Scholar 

  29. Liu, Z., Zhang, L., Pang, Y., et al.: Micro-PIV investigation of the internal flow transitions inside droplets traveling in a rectangular microchannel. Microfluid. Nanofluidics 21, 180 (2017)

    Article  Google Scholar 

  30. Pang, Y., Liu, Z., Zhao, F.: Downstream pressure and elastic wall reflection of droplet flow in a T-junction microchannel. Acta Mech. Sin. PRC 32, 579–587 (2016)

    Article  Google Scholar 

  31. Sivasamy, J., Wong, T.N., Nguyen, N.T., et al.: An investigation on the mechanism of droplet formation in a microfluidic T-junction. Microfluid. Nanofluidics 11, 1–10 (2011)

    Article  Google Scholar 

  32. Yuan, Q., Zhao, Y.: Precursor film in dynamic wetting, electrowetting, and electro-elasto-capillarity. Phys. Rev. Lett. 104, 246101 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the support of the National Natural Science Foundation of China (11572013 and 11702007) and the China Postdoctoral Science Foundation (2017M610725).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaomiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Wang, X. & Liu, Z. Study of droplet flow in a T-shape microchannel with bottom wall fluctuation. Acta Mech. Sin. 34, 632–643 (2018). https://doi.org/10.1007/s10409-018-0750-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-0750-7

Keywords

Navigation