Skip to main content
Log in

Nuclear mechanics during and after constricted migration

  • Review Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

Cell migration through very narrow spaces in tissues has been seen in both physiological and pathological contexts. For example, immune cells squeeze through the vasculature and the extracellular matrix to reach wound or disease sites, and similarly, cancer cells crawl through interstices in tissues to invade tumor-free regions. The bulky and stiff nucleus of a cell is a barrier to such constricted migration—with smaller pores exponentially more difficult for passage. Cells must actively deform their nuclei to squeeze through constrictions, and this involves the stress-generating cytoskeleton. Here we review: (1) nuclear structures and morphological regulation, (2) proposed mechanisms that drive constricted migration, (3) short-term consequences such as nuclear envelope (NE) rupture and DNA damage during such process, (4) biophysical factors that facilitate NE rupture, and (5) long-term consequences such as genomic variation caused by repetitive NE rupture. Both experimental results and modeling are provided with the intention to better understand constricted migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rustad, K.C., Gurtner, G.C.: Mesenchymal stem cells home to sites of injury and inflammation. Adv. Wound Care (New Rochelle) 1, 147–152 (2012)

    Article  Google Scholar 

  2. Luster, A.D., Alon, R., von Andrian, U.H.: Immune cell migration in inflammation: present and future therapeutic targets. Nat. Immunol. 6, 1182–1190 (2005)

    Article  Google Scholar 

  3. Clark, A.G., Vignjevic, D.M.: Modes of cancer cell invasion and the role of the microenvironment. Curr. Opin. Cell Biol. 36, 13–22 (2015)

    Article  Google Scholar 

  4. Denais, C.M., Gilbert, R.M., Isermann, P., et al.: Nuclear envelope rupture and repair during cancer cell migration. Science 352, 353–358 (2016)

    Article  Google Scholar 

  5. Raab, M., Gentili, M., de Belly, H., et al.: ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death. Science 352, 359–362 (2016)

    Article  Google Scholar 

  6. Harada, T., Swift, J., Irianto, J., et al.: Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014)

    Article  Google Scholar 

  7. Irianto, J., Pfeifer, C.R., Ivanovska, I.L., et al.: Nuclear lamins in cancer. Cell. Mol. Bioeng. 9, 258–267 (2016)

    Article  Google Scholar 

  8. Swift, J., Ivanovska, I.L., Buxboim, A., et al.: Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013)

    Article  Google Scholar 

  9. Yates, L.R., Knappskog, S., Wedge, D., et al.: Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184 (2017)

    Article  Google Scholar 

  10. Pfeifer, C.R., Alvey, C.M., Irianto, J., et al.: Genome variation across cancers scales with tissue stiffness—an invasion-mutation mechanism and implications for immune cell infiltration. Curr. Opin. Syst. Biol. 2, 103–114 (2017)

    Article  Google Scholar 

  11. Tomasetti, C., Vogelstein, B.: Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81 (2015)

    Article  Google Scholar 

  12. Alshareeda, A.T., Negm, O.H., Aleskandarany, M.A., et al.: Clinical and biological significance of RAD51 expression in breast cancer: a key DNA damage response protein. Breast Cancer Res. Treat. 159, 41–53 (2016)

    Article  Google Scholar 

  13. Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Constricted cell migration causes nuclear lamina damage, DNA breaks, and squeeze-out of repair factors. BioRxiv 035626 (2015)

  14. Burke, B., Roux, K.J.: Nuclei take a position: managing nuclear location. Dev. Cell 17, 587–597 (2009)

    Article  Google Scholar 

  15. Edens, L.J., White, K.H., Jevtic, P., et al.: Nuclear size regulation: from single cells to development and disease. Trends Cell Biol. 23, 151–159 (2013)

    Article  Google Scholar 

  16. Liotta, L.A., Steeg, P.S., Stetler-Stevenson, W.G.: Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell 64, 327–336 (1991)

    Article  Google Scholar 

  17. Li, Y., Lovett, D., Zhang, Q., et al.: Moving cell boundaries drive nuclear shaping during cell spreading. Biophys. J. 109, 670–686 (2015)

    Article  Google Scholar 

  18. Webster, M., Witkin, K.L., Cohen-Fix, O.: Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly. J. Cell Sci. 122, 1477–1486 (2009)

    Article  Google Scholar 

  19. Alam, S., Lovett, D.B., Dickinson, R.B., et al.: Nuclear forces and cell mechanosensing. Prog. Mol. Biol. Transl. Sci. 126, 205–215 (2014)

    Article  Google Scholar 

  20. Cho, S., Irianto, J., Discher, D.E.: Mechanosensing by the nucleus: from pathways to scaling relationships. J. Cell Biol. 216, 305–315 (2017)

    Article  Google Scholar 

  21. Guilluy, C., Burridge, K.: Nuclear mechanotransduction: forcing the nucleus to respond. Nucleus 6, 19–22 (2015)

    Article  Google Scholar 

  22. Chin, L., Xia, Y., Discher, D.E., et al.: Mechanotransduction in cancer. Curr. Opin. Chem. Eng. 11, 77–84 (2016)

    Article  Google Scholar 

  23. Lee, Y.L., Burke, B.: LINC complexes and nuclear positioning. Semin. Cell Dev. Biol. 82, 67–76 (2018)

    Article  Google Scholar 

  24. Mazumder, A., Shivashankar, G.V.: Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development. J. R. Soc. Interface 7, S321–S330 (2010)

    Article  Google Scholar 

  25. Nagayama, K., Yahiro, Y., Matsumoto, T.: Stress fibers stabilize the position of intranuclear DNA through mechanical connection with the nucleus in vascular smooth muscle cells. FEBS Lett. 585, 3992–3997 (2011)

    Article  Google Scholar 

  26. Tapley, E.C., Starr, D.A.: Connecting the nucleus to the cytoskeleton by SUN-KASH bridges across the nuclear envelope. Curr. Opin. Cell Biol. 25, 57–62 (2013)

    Article  Google Scholar 

  27. Arsenovic, P.T., Ramachandran, I., Bathula, K., et al.: Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension. Biophys. J. 110, 34–43 (2016)

    Article  Google Scholar 

  28. Graumann, K., Vanrobays, E., Tutois, S., et al.: Characterization of two distinct subfamilies of SUN-domain proteins in Arabidopsis and their interactions with the novel KASH-domain protein AtTIK. J. Exp. Bot. 65, 6499–6512 (2014)

    Article  Google Scholar 

  29. Kim, J.K., Louhghalam, A., Lee, G., et al.: Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8, 2123 (2017)

    Article  Google Scholar 

  30. Ramdas, N.M., Shivashankar, G.V.: Cytoskeletal control of nuclear morphology and chromatin organization. J. Mol. Biol. 427, 695–706 (2015)

    Article  Google Scholar 

  31. Uhler, C., Shivashankar, G.V.: Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat. Rev. Mol. Cell Biol. 18, 717–727 (2017)

    Article  Google Scholar 

  32. Turgay, Y., Eibauer, M., Goldman, A.E., et al.: The molecular architecture of lamins in somatic cells. Nature 543, 261–264 (2017)

    Article  Google Scholar 

  33. Belaadi, N., Aureille, J., Guilluy, C.: Under pressure: mechanical stress management in the nucleus. Cells 5, 27 (2016)

    Article  Google Scholar 

  34. Dechat, T., Adam, S.A., Taimen, P., et al.: Nuclear lamins. Cold Spring Harb. Perspect. Biol. 2, a000547 (2010)

    Article  Google Scholar 

  35. Jung, H.J., Nobumori, C., Goulbourne, C.N., et al.: Farnesylation of lamin B1 is important for retention of nuclear chromatin during neuronal migration. Proc. Natl. Acad. Sci. U.S.A. 110, E1923–E1932 (2013)

    Article  Google Scholar 

  36. Goldman, R.D., Gruenbaum, Y., Moir, R.D., et al.: Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16, 533–547 (2002)

    Article  Google Scholar 

  37. Gilchrist, S., Gilbert, N., Perry, P., et al.: Altered protein dynamics of disease-associated lamin A mutants. BMC Cell Biol. 5, 46 (2004)

    Article  Google Scholar 

  38. Moir, R.D., Yoon, M., Khuon, S., et al.: Nuclear lamins A and B1: different pathways of assembly during nuclear envelope formation in living cells. J. Cell Biol. 151, 1155–1168 (2000)

    Article  Google Scholar 

  39. Buxboim, A., Swift, J., Irianto, J., et al.: Matrix elasticity regulates lamin-A, C phosphorylation and turnover with feedback to actomyosin. Curr. Biol. 24, 1909–1917 (2014)

    Article  Google Scholar 

  40. Dingal, P.C., Discher, D.E.: Systems mechanobiology: tension-inhibited protein turnover is sufficient to physically control gene circuits. Biophys. J. 107, 2734–2743 (2014)

    Article  Google Scholar 

  41. Vigouroux, C., Auclair, M., Dubosclard, E., et al.: Nuclear envelope disorganization in fibroblasts from lipodystrophic patients with heterozygous R482Q/W mutations in the lamin A/C gene. J. Cell Sci. 114, 4459–4468 (2001)

    Google Scholar 

  42. Muchir, A., Medioni, J., Laluc, M., et al.: Nuclear envelope alterations in fibroblasts from patients with muscular dystrophy, cardiomyopathy, and partial lipodystrophy carrying lamin A/C gene mutations. Muscle Nerve 30, 444–450 (2004)

    Article  Google Scholar 

  43. Cho, S., Abbas, A., Irianto, J., et al.: Progerin phosphorylation in interphase is lower and less mechanosensitive than lamin-A, C in iPS-derived mesenchymal stem cells. Nucleus 9, 230–245 (2018)

    Article  Google Scholar 

  44. Vicente-Manzanares, M., Ma, X., Adelstein, R.S., et al.: Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778–790 (2009)

    Article  Google Scholar 

  45. Khatau, S.B., Hale, C.M., Stewart-Hutchinson, P.J., et al.: A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. U.S.A. 106, 19017–19022 (2009)

    Article  Google Scholar 

  46. Pajerowski, J.D., Dahl, K.N., Zhong, F.L., et al.: Physical plasticity of the nucleus in stem cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 104, 15619–15624 (2007)

    Article  Google Scholar 

  47. Lammerding, J., Fong, L.G., Ji, J.Y., et al.: Lamins A and C but not lamin B1 regulate nuclear mechanics. J. Biol. Chem. 281, 25768–25780 (2006)

    Article  Google Scholar 

  48. Vicente-Manzanares, M., Webb, D.J., Horwitz, A.R.: Cell migration at a glance. J. Cell Sci. 118, 4917–4919 (2005)

    Article  Google Scholar 

  49. Ridley, A.J., Schwartz, M.A., Burridge, K., et al.: Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

    Article  Google Scholar 

  50. Etienne-Manneville, S.: Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29, 471–499 (2013)

    Article  Google Scholar 

  51. Ganguly, A., Yang, H., Sharma, R., et al.: The role of microtubules and their dynamics in cell migration. J. Biol. Chem. 287, 43359–43369 (2012)

    Article  Google Scholar 

  52. Yamaguchi, H., Condeelis, J.: Regulation of the actin cytoskeleton in cancer cell migration and invasion. Biochim. Biophys. Acta 1773, 642–652 (2007)

    Article  Google Scholar 

  53. Mogilner, A., Oster, G.: Cell motility driven by actin polymerization. Biophys. J. 71, 3030–3045 (1996)

    Article  Google Scholar 

  54. Pasapera, A.M., Schneider, I.C., Rericha, E., et al.: Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. J. Cell Biol. 188, 877–890 (2010)

    Article  Google Scholar 

  55. Jorrisch, M.H., Shih, W., Yamada, S.: Myosin IIA deficient cells migrate efficiently despite reduced traction forces at cell periphery. Biol. Open 2, 368–372 (2013)

    Article  Google Scholar 

  56. Doyle, A.D., Kutys, M.L., Conti, M.A., et al.: Micro-environmental control of cell migration—myosin IIA is required for efficient migration in fibrillar environments through control of cell adhesion dynamics. J. Cell Sci. 125, 2244–2256 (2012)

    Article  Google Scholar 

  57. Friedl, P., Zanker, K.S., Brocker, E.B.: Cell migration strategies in 3-D extracellular matrix: differences in morphology, cell matrix interactions, and integrin function. Microsc. Res. Tech. 43, 369–378 (1998)

    Article  Google Scholar 

  58. Beach, J.R., Shao, L., Remmert, K., et al.: Nonmuscle myosin II isoforms coassemble in living cells. Curr. Biol. 24, 1160–1166 (2014)

    Article  Google Scholar 

  59. Vicente-Manzanares, M., Zareno, J., Whitmore, L., et al.: Regulation of protrusion, adhesion dynamics, and polarity by myosins IIA and IIB in migrating cells. J. Cell Biol. 176, 573–580 (2007)

    Article  Google Scholar 

  60. Chang, W., Folker, E.S., Worman, H.J., et al.: Emerin organizes actin flow for nuclear movement and centrosome orientation in migrating fibroblasts. Mol. Biol. Cell 24, 3869–3880 (2013)

    Article  Google Scholar 

  61. Raab, M., Swift, J., Dingal, P.C., et al.: Crawling from soft to stiff matrix polarizes the cytoskeleton and phosphoregulates myosin-II heavy chain. J. Cell Biol. 199, 669–683 (2012)

    Article  Google Scholar 

  62. Irianto, J., Pfeifer, C.R., Xia, Y., et al.: Snapshot: mechanosensing matrix. Cell 165, 1820 (2016)

    Article  Google Scholar 

  63. Irianto, J., Pfeifer, C.R., Bennett, R.R., et al.: Nuclear constriction segregates mobile nuclear proteins away from chromatin. Mol. Biol. Cell 27, 4011–4020 (2016)

    Article  Google Scholar 

  64. Cao, X., Moeendarbary, E., Isermann, P., et al.: A chemomechanical model for nuclear morphology and stresses during cell transendothelial migration. Biophys. J. 111, 1541–1552 (2016)

    Article  Google Scholar 

  65. Shenoy, V.B., Wang, H., Wang, X.: A chemo-mechanical free-energy-based approach to model durotaxis and extracellular stiffness-dependent contraction and polarization of cells. Interface Focus 6, 20150067 (2016)

    Article  Google Scholar 

  66. Zhang, X., Xu, R., Zhu, B., et al.: Syne-1 and Syne-2 play crucial roles in myonuclear anchorage and motor neuron innervation. Development 134, 901–908 (2007)

    Article  Google Scholar 

  67. Lammermann, T., Bader, B.L., Monkley, S.J., et al.: Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)

    Article  Google Scholar 

  68. Thomas, D.G., Yenepalli, A., Denais, C.M., et al.: Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210, 583–594 (2015)

    Article  Google Scholar 

  69. Beadle, C., Assanah, M.C., Monzo, P., et al.: The role of myosin II in glioma invasion of the brain. Mol. Biol. Cell 19, 3357–3368 (2008)

    Article  Google Scholar 

  70. Thiam, H.R., Vargas, P., Carpi, N., et al.: Perinuclear Arp2/3-driven actin polymerization enables nuclear deformation to facilitate cell migration through complex environments. Nat. Commun. 7, 10997 (2016)

    Article  Google Scholar 

  71. Chen, M.B., Whisler, J.A., Jeon, J.S., et al.: Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013)

    Article  Google Scholar 

  72. Irianto, J., Xia, Y., Pfeifer, C.R., et al.: As a nucleus enters a small pore, chromatin stretches and maintains integrity, even with DNA breaks. Biophys. J. 112, 446–449 (2016)

    Article  Google Scholar 

  73. Wu, J., Kent, I.A., Shekhar, N., et al.: Actomyosin pulls to advance the nucleus in a migrating tissue cell. Biophys. J. 106, 7–15 (2014)

    Article  Google Scholar 

  74. Irianto, J., Xia, Y., Pfeifer, C.R., et al.: DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27, 210–223 (2017)

    Article  Google Scholar 

  75. De Vos, W.H., Houben, F., Kamps, M., et al.: Repetitive disruptions of the nuclear envelope invoke temporary loss of cellular compartmentalization in laminopathies. Hum. Mol. Genet. 20, 4175–4186 (2011)

    Article  Google Scholar 

  76. Tamiello, C., Kamps, M.A., van den Wijngaard, A., et al.: Soft substrates normalize nuclear morphology and prevent nuclear rupture in fibroblasts from a laminopathy patient with compound heterozygous LMNA mutations. Nucleus 4, 61–73 (2013)

    Article  Google Scholar 

  77. Hatch, E.M., Hetzer, M.W.: Nuclear envelope rupture is induced by actin-based nucleus confinement. J. Cell Biol. 215, 27–36 (2016)

    Article  Google Scholar 

  78. Xia, Y., Ivanovska, I.L., Zhu, K., et al.: Nuclear rupture at sites of high curvature compromises retention of DNA repair factors. J. Cell Biol. 217, 3796–3808 (2018)

    Article  Google Scholar 

  79. Raschke, S., Spickermann, S., Toncian, T., et al.: Ultra-short laser-accelerated proton pulses have similar DNA-damaging effectiveness but produce less immediate nitroxidative stress than conventional proton beams. Sci. Rep. 6, 32441 (2016)

    Article  Google Scholar 

  80. Luecke, S., Holleufer, A., Christensen, M.H., et al.: cGAS is activated by DNA in a length-dependent manner. EMBO Rep. 18, 1701–1715 (2017)

    Article  Google Scholar 

  81. Chen, Q., Sun, L., Chen, Z.J.: Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat. Immunol. 17, 1142–1149 (2016)

    Article  Google Scholar 

  82. Harding, S.M., Benci, J.L., Irianto, J., et al.: Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature 548, 466–470 (2017)

    Article  Google Scholar 

  83. Vietri, M., Schink, K.O., Campsteijn, C., et al.: Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature 522, 231–235 (2015)

    Article  Google Scholar 

  84. Olmos, Y., Hodgson, L., Mantell, J., et al.: ESCRT-III controls nuclear envelope reformation. Nature 522, 236–239 (2015)

    Article  Google Scholar 

  85. Jimenez, A.J., Maiuri, P., Lafaurie-Janvore, J., et al.: ESCRT machinery is required for plasma membrane repair. Science 343, 1247136 (2014)

    Article  Google Scholar 

  86. Bennett, R.R., Pfeifer, C.R., Irianto, J., et al.: Elastic-fluid model for DNA damage and mutation from nuclear fluid segregation due to cell migration. Biophys. J. 112, 2271–2279 (2017)

    Article  Google Scholar 

  87. Bancaud, A., Huet, S., Daigle, N., et al.: Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J. 28, 3785–3798 (2009)

    Article  Google Scholar 

  88. Deviri, D., Discher, D.E., Safran, S.A.: Rupture dynamics and chromatin herniation in deformed nuclei. Biophys. J. 113, 1060–1071 (2017)

    Article  Google Scholar 

  89. Odde, D.J., Ma, L., Briggs, A.H., et al.: Microtubule bending and breaking in living fibroblast cells. J. Cell Sci. 112, 3283–3288 (1999)

    Google Scholar 

  90. Engler, A.J., Sen, S., Sweeney, H.L., et al.: Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006)

    Article  Google Scholar 

  91. Ivanovska, I.L., Swift, J., Spinler, K., et al.: Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol. Biol. Cell 28, 2010–2022 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors in this study were supported by the National Institutes of Health National Cancer Institute under Physical Sciences Oncology Center Award U54 CA193417, National Heart Lung and Blood Institute Award R21 HL128187, the US–Israel Binational Science Foundation, and National Science Foundation grant agreement CMMI 15-48571. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health nor the National Science Foundation. The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis E. Discher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xia, Y., Pfeifer, C.R. & Discher, D.E. Nuclear mechanics during and after constricted migration. Acta Mech. Sin. 35, 299–308 (2019). https://doi.org/10.1007/s10409-018-00836-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-018-00836-9

Keywords

Navigation