Skip to main content
Log in

Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The present work introduces a novel concurrent optimization formulation to meet the requirements of lightweight design and various constraints simultaneously. Nodal displacement of macrostructure and effective thermal conductivity of microstructure are regarded as the constraint functions, which means taking into account both the load-carrying capabilities and the thermal insulation properties. The effective properties of porous material derived from numerical homogenization are used for macrostructural analysis. Meanwhile, displacement vectors of macrostructures from original and adjoint load cases are used for sensitivity analysis of the microstructure. Design variables in the form of reciprocal functions of relative densities are introduced and used for linearization of the constraint function. The objective function of total mass is approximately expressed by the second order Taylor series expansion. Then, the proposed concurrent optimization problem is solved using a sequential quadratic programming algorithm, by splitting into a series of sub-problems in the form of the quadratic program. Finally, several numerical examples are presented to validate the effectiveness of the proposed optimization method. The various effects including initial designs, prescribed limits of nodal displacement, and effective thermal conductivity on optimized designs are also investigated. An amount of optimized macrostructures and their corresponding microstructures are achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bendsøe, M.P., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendsøe, M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  3. Zhou, M., Rozvany, G.I.N.: The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)

    Article  Google Scholar 

  4. Xie, Y.M., Steven, G.P.: A simple evolutionary procedure for structural optimization. Comput. Struct. 49, 885–896 (1993)

    Article  Google Scholar 

  5. Huang, X., Xie, Y.M.: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method. Finite Elem. Anal. Des. 43, 1039–1049 (2007)

    Article  Google Scholar 

  6. Wang, M.Y., Wang, X., Guo, D.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sethian, J.A., Wiegmann, A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Allaire, G., Jouve, F., Toader, A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zhou, S., Wang, M.Y.: Multimaterial structural topology optimization with a generalized Cahn–Hilliard model of multiphase transition. Struct. Multidiscip. Optim. 33, 89 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Guo, X., Zhang, W., Zhong, W.: Doing topology optimization explicitly and geometricallyła new moving morphable components based framework. J. Appl. Mech. 81, 081009 (2014)

    Article  Google Scholar 

  11. Guo, X., Zhang, W., Zhang, J., et al.: Explicit structural topology optimization based on moving morphable components (MMC) with curved skeletons. Comput. Methods Appl. Mech. Eng. 310, 711–748 (2016)

    Article  MathSciNet  Google Scholar 

  12. Zhang, W., Zhang, J., Guo, X.: Lagrangian description based topology optimization—a revival of shape optimization. J. Appl. Mech. 83, 041010 (2016)

    Article  Google Scholar 

  13. Zhang, W., Yang, W., Zhou, J., et al.: Structural topology optimization through explicit boundary evolution. J. Appl. Mech. 84, 011011 (2016)

    Article  Google Scholar 

  14. Zhang, W., Chen, J., Zhu, X., et al.: Explicit three dimensional topology optimization via moving morphable void (MMV) approach. Comput. Methods Appl. Mech. Eng. 322, 590–614 (2017)

    Article  MathSciNet  Google Scholar 

  15. Guo, X., Zhou, J., Zhang, W., et al.: Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Eng. 323, 27–63 (2017)

  16. Eschenauer, H.A., Olhoff, N.: Topology optimization of continuum structures: a review. J. Appl. Mech. Appl. Mech. Rev. 54, 331–390 (2001)

    Article  Google Scholar 

  17. Rozvany, G.I.N.: A critical review of established methods of structural topology optimization. Struct. Multidiscip. Optim. 37, 217–237 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sigmund, O., Maute, K.: Topology optimization approaches. Struct. Multidiscip. Optim. 48, 1031–1055 (2013)

    Article  MathSciNet  Google Scholar 

  19. Sigmund, O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sigmund, O.: Tailoring materials with prescribed elastic properties. Mech. Mater. 20, 351–368 (1995)

    Article  Google Scholar 

  21. Clausen, A., Wang, F., Jensen, J.S., et al.: Topology optimized architectures with programmable Poisson’s ratio over large deformations. Adv. Mater. 27, 5523–5527 (2015)

    Article  Google Scholar 

  22. Xie, Y.M., Yang, X., Shen, J., et al.: Designing orthotropic materials for negative or zero compressibility. Int. J. Solids Struct. 51, 4038–4051 (2014)

    Article  Google Scholar 

  23. Wang, X., Xu, S., Zhou, S., et al.: Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review. Biomaterials 83, 127–141 (2016)

    Article  Google Scholar 

  24. Rodrigues, H., Guedes, J.M., Bendsoe, M.P.: Hierarchical optimization of material and structure. Struct. Multidiscip. Optim. 24, 1–10 (2002)

    Article  Google Scholar 

  25. Coelho, P.G., Fernandes, P.R., Guedes, J.M., et al.: A hierarchical model for concurrent material and topology optimisation of three-dimensional structures. Struct. Multidiscip. Optim. 35, 107–115 (2008)

    Article  Google Scholar 

  26. Liu, L., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)

    Article  Google Scholar 

  27. Niu, B., Yan, J., Cheng, G.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidiscip. Optim. 39, 115–132 (2009)

    Article  Google Scholar 

  28. Deng, J., Yan, J., Cheng, G.: Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material. Struct. Multidiscip. Optim. 47, 583–597 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Guo, X., Zhao, X., Zhang, W., et al.: Multi-scale robust design and optimization considering load uncertainties. Comput. Methods Appl. Mech. Eng. 283, 994–1009 (2015)

    Article  MathSciNet  Google Scholar 

  30. Huang, X., Zhou, S.W., Xie, Y.M.: Topology optimization of microstructures of cellular materials and composites for macrostructures. Comput. Mater. Sci. 67, 397–407 (2013)

    Article  Google Scholar 

  31. Yan, X., Huang, X., Sun, G., et al.: Two-scale optimal design of structures with thermal insulation materials. Compos. Struct. 120, 358–365 (2015)

    Article  Google Scholar 

  32. Liu, Q., Chan, R., Huang, X.: Concurrent topology optimization of macrostructures and material microstructures for natural frequency. Mater. Des. 106, 380–390 (2016)

    Article  Google Scholar 

  33. Xu, B., Jiang, J.S., Xie, Y.M.: Concurrent design of composite macrostructure and multi-phase material microstructure for minimum dynamic compliance. Compos. Struct. 128, 221–233 (2015)

    Article  Google Scholar 

  34. Xu, B., Xie, Y.M.: Concurrent design of composite macrostructure and cellular microstructure under random excitations. Compos. Struct. 123, 65–77 (2015)

    Article  Google Scholar 

  35. Xu, B., Huang, X., Xie, Y.M.: Two-scale dynamic optimal design of composite structures in the time domain using equivalent static loads. Compos. Struct. 142, 335–345 (2016)

    Article  Google Scholar 

  36. Zhang, W., Sun, S.: Scale-related topology optimization of cellular materials and structures. Int. J. Numer. Methods Eng. 68, 993–1011 (2006)

    Article  MATH  Google Scholar 

  37. Xia, L., Breitkopf, P.: Concurrent topology optimization design of material and structure within FE\(_2\) nonlinear multiscale analysis framework. Comput. Methods Appl. Mech. Eng. 278, 524–542 (2014)

    Article  Google Scholar 

  38. Xia, L., Breitkopf, P.: Recent advances on topology optimization of multiscale nonlinear structures. Arch. Comput. Methods Eng. 24, 227–249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Jia, J., Cheng, W., Long, K., et al.: Hierarchical design of structures and multiphase material cells. Comput. Struct. 165, 136–144 (2016)

    Article  Google Scholar 

  40. Long, K., Han, D., Gu, X.: Concurrent topology optimization of composite macrostructure and microstructure constructed by constituent phases of distinct Poisson’s ratios for maximum frequency. Comput. Mater. Sci. 129, 194–201 (2017)

    Article  Google Scholar 

  41. Chen, W., Tong, L., Liu, S.: Concurrent topology design of structure and material using a two-scale topology optimization. Comput. Struct. 178, 119–128 (2017)

    Article  Google Scholar 

  42. Sui, Y., Peng, X.: The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech. Sin. 22, 68–75 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sui, Y., Yang, D.: A new method for structural topological optimization based on the concept of independent continuous variables and smooth model. Acta Mech. Sin. 14, 179–185 (1998)

    Article  Google Scholar 

  44. Sui, Y.: Modelling, Transformation and Optimizationł New Developments of Structural Synthesis Method. Dalian University of Technology Press, Dalian (1996)

    Google Scholar 

  45. Andreassen, E., Andreasen, C.S.: How to determine composite material properties using numerical homogenization. Comput. Mater. Sci. 83, 488–495 (2014)

    Article  Google Scholar 

  46. Zuo, Z.H., Xie, Y.M.: Evolutionary topology optimization of continuum structures with a global displacement control. Comput. Aided Des. 56, 58–67 (2014)

    Article  Google Scholar 

  47. Lazarov, B.S., Sigmund, O.: Filters in topology optimization based on Helmholtz-type differential equations. Int. J. Numer. Methods Eng. 86, 765–781 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Amstutz, S., Giusti, S.M., Novotny, A.A., et al.: Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int. J. Numer. Methods Eng. 84, 733–756 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. Svanberg, K.: The method of moving asymptotes-a new method for structural optimization. Int. J. Numer. Methods Eng. 24, 359–373 (1987)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 11202078, 51405123) and the Fundamental Research Funds for the Central Universities (Grant 2017MS077). We are thankful for Professor Krister Svanberg for MMA program made freely available for research purposes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, K., Wang, X. & Gu, X. Concurrent topology optimization for minimization of total mass considering load-carrying capabilities and thermal insulation simultaneously. Acta Mech. Sin. 34, 315–326 (2018). https://doi.org/10.1007/s10409-017-0708-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0708-1

Keywords

Navigation