Skip to main content
Log in

Numerical stabilities of loosely coupled methods for robust modeling of lightweight and flexible structures in incompressible and viscous flows

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

The growing interest to examine the hydroelastic dynamics and stabilities of lightweight and flexible materials requires robust and accurate fluid–structure interaction (FSI) models. Classically, partitioned fluid and structure solvers are easier to implement compared to monolithic methods; however, partitioned FSI models are vulnerable to numerical (“virtual added mass”) instabilities for cases when the solid to fluid density ratio is low and if the flow is incompressible. As a partitioned method, the loosely hybrid coupled (LHC) method, which was introduced and validated in Young et al. (Acta Mech. Sin. 28:1030–1041, 2012), has been successfully used to efficiently and stably model lightweight and flexible structures. The LHC method achieves its numerical stability by, in addition to the viscous fluid forces, embedding potential flow approximations of the fluid induced forces to transform the partitioned FSI model into a semi-implicit scheme. The objective of this work is to derive and validate the numerical stability boundary of the LHC. The results show that the stability boundary of the LHC is much wider than traditional loosely coupled methods for a variety of numerical integration schemes. The results also show that inclusion of an estimate of the fluid inertial forces is the most critical to ensure the numerical stability when solving for fluid–structure interaction problems involving cases with a solid to fluid-added mass ratio less than one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Note that the elastic axis can be pushed to the upstream of the center of pressure by either applying sweep (or skew) or by manipulating the mass and/or stiffness distribution by using non-homogenous, non-uniform, or anisotropic wings/foils.

Abbreviations

\(A_\mathrm{c}^\mathrm{M} \) :

Nondimensional \(C_\mathrm{f}^\mathrm{M} \, (={C_\mathrm{f}^\mathrm{M} }/{\rho _\mathrm{f} Ub^{3}})\)

\(A_\mathrm{k}^\mathrm{M} \) :

Nondimensional \(K_\mathrm{f}^\mathrm{M} \, (={K_\mathrm{f}^\mathrm{M} }/{\rho _\mathrm{f} U^{2}b^{2}})\)

\(A_\mathrm{m}^\mathrm{M} \) :

Nondimensional \(M_\mathrm{f}^\mathrm{M} \,(={M_\mathrm{f}^\mathrm{M} }/{\rho _\mathrm{f} b^{4}})\)

\(A_\mathrm{c}^\mathrm{P} \) :

Nondimensional \(C_\mathrm{f}^\mathrm{P} \,(={C_\mathrm{f}^\mathrm{P} }/{\rho _\mathrm{f} Ub^{3}})\)

\(A_\mathrm{k}^\mathrm{P} \) :

Nondimensional \(K_\mathrm{f}^\mathrm{P} \,(={K_\mathrm{f}^\mathrm{P} }/{\rho _\mathrm{f} U^{2}b^{2}})\)

\(A_\mathrm{m}^\mathrm{P} \) :

Nondimensional \(M_\mathrm{f}^\mathrm{P} \,(={M_\mathrm{f}^\mathrm{P} }/{\rho _\mathrm{f} b^{4}})\)

ba :

Distance to E.A. from the foil’s mid-chord location

b :

Foil’s half chord length

\(\mathbf{C}\) :

Foil’s nondimensional radius of gyration \((={I_\theta }/{\rho _\mathrm{s} b^{4}})\)

C.G.:

Foil’s center of gravity

\(\tilde{C}_\mathrm{e}\) :

Part of the total fluid and solid damping treated explicitly (Eq. (12))

\(C_\mathrm{f}^\mathrm{M}\) :

Empirically estimated fluid–induced torsion damping from experiments and viscous simulations

\(C_\mathrm{f}^\mathrm{P}\) :

Potential-flow estimation of the fluid–induced torsion damping

\(\tilde{C}_\mathrm{i}\) :

Part of the total fluid and solid damping treated implicitly (Eq. (12))

\(C_\theta \) :

Foil’s torsional damping value per unit span

c :

Foil’s chord length

DOF:

Degree of freedom

E.A.:

Foil’s elastic axis

FC:

Fully-coupled

FSI:

Fluid–structure interaction

\(I_\theta \) :

Foil’s mass moment of inertia per unit span

\(\tilde{K}_\mathrm{e}\) :

Part of the total fluid and solid damping treated explicitly (Eq. (12))

\(K_\mathrm{f}^\mathrm{M}\) :

Empirically estimated fluid–induced torsion stiffness from experiments and viscous simulations

\(K_\mathrm{f}^\mathrm{P}\) :

Potential-flow estimation of the fluid–induced torsion stiffness

\(\tilde{K}_\mathrm{i}\) :

Part of the total fluid and solid damping treated implicitly (Eq. (12))

\(K_\theta \) :

Foil’s torsional stiffness per unit span

k :

Reduced frequency \((={\omega b}/U)\)

LC:

Loosely coupled

LHC:

Loosely hybrid coupled

\(\tilde{M}_\mathrm{e} \) :

Part of the total fluid and solid mass treated explicitly (Eq. (12))

\(M_\mathrm{f}^\mathrm{M} \) :

Empirically estimated fluid-added moment of inertia from experiments or viscous simulations

\(M_\mathrm{f}^\mathrm{P} \) :

Potential-flow estimation of the fluid-added moment of inertia

\(M_{\mathrm{fluid}}\) :

Fluid–induced moment per unit span

\(M_{\mathrm{fluid}}^\mathrm{E} \) :

Estimated fluid–induced moment per unit span

\(M_{\mathrm{fluid}}^\mathrm{M}\) :

Empirically estimated fluid–induced moment on the foil per unit span from experiments or viscous simulations

\(M_{\mathrm{fluid}}^\mathrm{P} \) :

Potential-flow estimation of the fluid–induced moment per unit span

\(\tilde{M}_\mathrm{i} \) :

Part of the total fluid and solid mass treated implicitly (Eq. (12))

n :

Discrete time-level \((t=n\Delta t)\)

Re :

Reynolds number \((={Uc}/{\upsilon _\mathrm{f} })\)

s :

Foil’s span length

t :

Time

\(\bar{{t}}\) :

Nondimensional time \((={tU}/b)\)

U :

Inflow speed

\(\bar{{U}}\) :

Reduced speed \((=U/b\omega _\theta )\)

\(x_\theta \) :

Distance to the C.G. from E.A. positive towards the foil trailing edge

\(\alpha \) :

Fraction of the fluid-added mass used for \(A_\mathrm{m}^\mathrm{P} \)\(A_\mathrm{m}^\mathrm{M} \)

\(\Delta t\) :

Time-step size

\(\Delta \bar{{t}}\) :

Nondimensional time-step size

\(\theta \) :

Foil’s twist angle at its E.A.

\(\lambda \) :

Growth factor (in time) of \(\theta \, (\theta _{n+1} =\lambda \theta _n )\)

\(\mu \) :

Solid to fluid density ratio \((={\rho _\mathrm{s} }/{\rho _\mathrm{f} })\)

\(\upsilon _\mathrm{f} \) :

Fluid’s kinematic viscosity

\(\xi _\theta \) :

Foil’s damping coefficient in air \((={C_\theta }/{2I_\theta \omega _\theta })\)

\(\rho _\mathrm{f} \) :

Fluid’s density

\(\rho _\mathrm{s} \) :

Foil’s density

\(\phi \) :

Theodorsen’s function (Eq. (36))

\(\omega \) :

Foil’s primary vibration frequency

\(\omega _\mathrm{n} \) :

Foil’s twisting natural frequency in water

\(\omega _\theta \) :

Foil’s twisting natural frequency in air

References

  1. Akcabay, D.T., Young, Y.L.: Hydroelastic response and energy harvesting potential of flexible piezoelectric beams in viscous flow. Phys. Fluids 24, 054106 (2012)

    Article  Google Scholar 

  2. Bazilevs, Y., Hsu, M.-C., Kiendl, J., et al.: 3D simulation of wind turbine rotors at full scale. Part II: fluid–structure interaction modeling with composite blades. Int. J. Numer. Method. Fluids 65, 236–253 (2011)

    Article  MATH  Google Scholar 

  3. Dumont, Vierendeels J., Verdonck, P.R.: A partitioned strongly coupled fluid–structure interaction method to model heart valve dynamics. J. Comput. Appl. Math. 215, 602–609 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Young, Y.L.: Fluid–structure interaction analysis of flexible composite marine propellers. J. Fluids Struct. 24, 799–818 (2008)

    Article  Google Scholar 

  5. Lian, Y., Shyy W.: Three-dimensional fluid–structure interactions of a membrane wing for micro air vehicle applications. In: 44th AIAA, ASME, ASCE, AHS Structures, Structural Dynamics, and Materials Conference, Norfolk, April 7–10 (2003). doi:10.2514/6.2003-1726

  6. Leroyer, A., Visonneau, M.: Numerical methods for RANSE simulations of a self-propelled fish-like body. J. Fluids Struct. 20, 975–991 (2005)

    Article  Google Scholar 

  7. Motley, M.R., Young, Y.L.: Scaling of the transient hydroelastic response and failure mechanisms of self-adaptive composite marine propellers. Int. J. Rotat. Mach. 2012, 632856 (2012)

  8. Akcabay, D.T., Young, Y.L.: Scaling the dynamic response and energy harvesting potential of piezoelectric beams. Appl. Phys. Lett. 101, 264104 (2012). doi:10.1063/1.4773210

  9. Young, Y.L.: Dynamic hydroelastic scaling of self-adaptive composite marine rotors. Compos. Struct. 92, 97–106 (2010)

    Article  Google Scholar 

  10. Heil, M.: An efficient solver for the fully coupled solution of large-displacement fluid–structure interaction problems. Comput. Method. Appl. Mech. Eng. 193, 1–23 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hübner, B., Walhorn, E., Dinkler, D.: A monolithic approach to fluid-structure interaction using space–time finite elements. Comput. Method. Appl. Mech. Eng. 193, 2087–2104 (2004)

    Article  MATH  Google Scholar 

  12. Ishihara, D., Yoshimura, S.: A monolithic approach for interaction of incompressible viscous fluid and an elastic body based on fluid pressure poisson equation. Int. J. Numer. Method. Eng. 64, 167–203 (2005)

    Article  MATH  Google Scholar 

  13. Bathe, K.-J., Zhang, H.: Finite element developments for general fluid flows with structural interactions. Int. J. Numer. Method. Eng. 60, 213–232 (2004)

    Article  MATH  Google Scholar 

  14. Longatte, E., Verreman, V., Souli, M.: Time marching for simulation of fluid–structure interaction problems. J. Fluids Struct. 25, 95–111 (2009)

    Article  Google Scholar 

  15. Fernández, M.A., Gerbeau, J.-F., Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid. Int. J. Numer. Method. Eng. 69, 794–821 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Förster, C., Wall, W.A., Ramm, E.: Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows. Comput. Method. Appl. Mech. Eng. 196, 1278–1293 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Küttler, U., Wall, W.A.: Fixed-point fluid–structure interaction solvers with dynamic relaxation. Comput. Mech. 43, 61–72 (2008)

    Article  MATH  Google Scholar 

  18. Badia, S., Nobile, F., Vergara, C.: Fluid–structure partitioned procedures based on robin transmission conditions. J. Comput. Phys. 227, 7027–7051 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Young, Y.L., Chae, E.J., Akcabay, D.T.: Hybrid algorithm for modeling of fluid–structure interaction in incompressible viscous flows. Acta Mech. Sin. 28, 1030–1041 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Degroote, J., Bruggeman, P., Haelterman, R., et al.: Stability of a coupling technique for partitioned solvers in FSI applications. Comput. Struct. 86, 2224–2234 (2008)

    Article  Google Scholar 

  21. van Brummelen, E.H.: Added mass effects of compressible and incompressible flows in fluid–structure interaction. J. Appl. Mech. 76, 021206 (2009)

    Article  Google Scholar 

  22. Vierendeels, J., Dumont, K., Dick, E., et al.: Analysis and stabilization of fluid–structure interaction algorithm for rigid-body motion. AIAA J. 43, 2549–2557 (2005)

    Article  Google Scholar 

  23. Causin, P., Gerbeau, J.F., Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid–structure problems. Comput. Method. Appl. Mech. Eng. 194, 4506–4527 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Belanger, F., Païdoussis, M.P., de Langre, E.: Time-marching analysis of fluid-coupled systems with large added mass. AIAA J. 33, 752–757 (1995)

    Article  Google Scholar 

  25. Idelsohn, S.R., Del Pin, F., Rossi, R., et al.: Fluid–structure interaction problems with strong added-mass effect. Int. J. Numer. Method. Eng. 80, 1261–1294 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Douglas Jr., J., Dupont, T.: Alternating-Direction Galerkin Methods on Rectangles, Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970). Academic Press, New York (1971)

    Google Scholar 

  27. Smereka, P.: Semi-implicit level set methods for curvature and surface diffusion motion. J. Sci. Comput. 19, 439–456 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Xu, J.-J., Zhao, H.-K.: An Eulerian formulation for solving partial differential equations along a moving interface. J. Sci. Comput. 19, 573–594 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ceniceros, H.D., Hou, T.Y.: An efficient dynamically adaptive mesh for potentially singular solutions. J. Comput. Phys. 172, 609–639 (2001)

    Article  MATH  Google Scholar 

  30. Baek, H., Karniadakis, G.E.: A convergence study of a new partitioned fluid–structure interaction algorithm based on fictitious mass and damping. J. Comput. Phys. 231, 629–652 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Connell, B.S.H., Yue, D.K.P.: Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 33–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chae, E.J., Akcabay, D.T., Young, Y.L.: Dynamic response and stability of a flapping foil in a dense viscous fluid. Phys. Fluids 25, 104106 (2013)

    Article  Google Scholar 

  33. Akcabay, D.T., Ducoin, A., Chae, E.J., et al.: Transient hydroelastic response of a flexible hydrofoil in subcavitating and cavitating flows. In: 29th Symposium on Naval Hydrodynamics. Gothenburg, Sweden (2012)

  34. Akcabay, D.T., Young, Y.L.: Influence of cavitation on the hydroelastic stability of hydrofoils. J. Fluids Struct. 49, 170–185 (2014)

    Article  Google Scholar 

  35. Akcabay, D.T., Chae, E.J., Young, Y.L., et al.: Cavity induced vibration of flexible hydrofoils. J. Fluids Struct. 49, 463–484 (2014)

    Article  Google Scholar 

  36. Akcabay, D.T., Young, Y.L.: Parametric excitations and lock-in of flexible hydrofoils in two-phase flows. J. Fluids Struct. 57, 344–356 (2015)

    Article  Google Scholar 

  37. Kring, D.C.: Time domain ship motions by a three-dimensional Rankine panel method, [Ph.D. Thesis], Massachusetts Institute of Technology, USA (1994)

  38. Theodorsen, T.: General theory of aerodynamic instability and the mechanism of flutter. National Advisory Committee for Aeronautics Report, No. 496 (1935)

  39. Fung, Y.C.: An Introduction to the Theory of Aeroelasticity. Dover Publications, New York (1993)

    Google Scholar 

  40. Münch, C., Ausoni, P., Braun, O., et al.: Fluid–structure coupling for an oscillating hydrofoil. J. Fluids Struct. 26, 1018–1033 (2010)

    Article  Google Scholar 

  41. Roth, S., Calmon, M., Farhat, M., et al.: Hydrodynamic damping identification from an impulse response of a vibrating blade. In: Proceedings of the \(3^{\rm rd}\) IAHR International Meeting of the Workgroup on Cavitation and Dynamic Problems in Hydraulic Machinery and Systems, Brno, Czech Republic (2009)

  42. ANSYS: ANSYS CFX-Solver Modeling guide. Release 14.0. ANSYS Inc., Canonsburg (2011)

    Google Scholar 

  43. Brennen, C.E.: A review of added mass and fluid inertial forces, Report No. CR 82.010, Department of the Navy, Naval Civil Engineering Laboratory. Port Hueneme, CA, USA (1982)

  44. Young, Y.L., Motley, M.R., Barber, R., et al.: Adaptive composite marine propulsors and turbines: progress and challenges. Appl. Mech. Rev. 68, 062001 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support received from the Office of Naval Research (ONR) (Grants N00014-11-1-0833 and N00014-13-1-0383) managed by Ms. Kelly Cooper and Dr. Ki-Han Kim, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Lu Young.

Appendix

Appendix

1.1 A1 Time-discretization of Eq. (12) for Scheme B shown in Eq. (14)

Scheme B uses the Crank–Nicholson method to approximate \(\dot{\bar{{\theta }}}\) and \(\ddot{\bar{{\theta }}}\) as

$$\begin{aligned} \frac{\hbox {d}\theta }{\hbox {d}\bar{{t}}}= & {} \dot{\bar{{\theta }}}\,\rightarrow \,\theta _{n+1} \approx \theta _n +\frac{{\Delta }\bar{{t}}}{2}\left( {\dot{\bar{{\theta }}}_{n+1} +\dot{\bar{{\theta }}}_n } \right) , \end{aligned}$$
(A1)
$$\begin{aligned} \frac{\hbox {d}\left( {\dot{\bar{{\theta }}}} \right) }{\hbox {d}\bar{{t}}}= & {} \ddot{\bar{{\theta }}}\,\rightarrow \,\dot{\bar{{\theta }}}_{n+1} \approx \dot{\bar{{\theta }}}_n +\frac{{\Delta }\bar{{t}}}{2}\left( {\ddot{\bar{{\theta }}}_{n+1} +\ddot{\bar{{\theta }}}_n } \right) . \end{aligned}$$
(A2)

Re-arranging Eqs. (A1) and (A2) yield

$$\begin{aligned} \dot{\bar{{\theta }}}_{n+1}\approx & {} \frac{2}{\Delta \bar{{t}}}\left( {\theta _{n+1} -\theta _n } \right) -\dot{\bar{{\theta }}}_n, \end{aligned}$$
(A3)
$$\begin{aligned} \ddot{\bar{{\theta }}}_{n+1}\approx & {} \frac{2}{\Delta \bar{{t}}}\left( {\dot{\bar{{\theta }}}_{n+1} -\dot{\bar{{\theta }}}_n } \right) -\ddot{\bar{{\theta }}}_n , \end{aligned}$$
(A4)

and, hence,

$$\begin{aligned} \ddot{\bar{{\theta }}}_{n+1} \approx \frac{4}{\Delta \bar{{t}}^{2}}\left( {\theta _{n+1} -\theta _n } \right) -\frac{4\dot{\bar{{\theta }}}_n }{\Delta \bar{{t}}}-\ddot{\bar{{\theta }}}_n. \end{aligned}$$
(A5)

Using Eqs. (A3) and (A5) in Eq. (12), in addition to Eqs. (A3) and (A5) themselves result in the linear system shown in Eq. (14), which could be solved in terms of \(\theta _{n+1} \), \(\dot{\bar{{\theta }}}_{n+1} \), and \(\ddot{\bar{{\theta }}}_{n+1} \).

1.2 A2 Time-discretization of Eq. (12) for Scheme C shown in Eq. (15)

Scheme C is constructed by converting the second-order differential equation (Eq. (12)) into two first-order differential equations for (\(\theta \), \(\dot{\bar{{\theta }}})\) as

$$\begin{aligned}&\frac{\hbox {d}\theta }{\hbox {d}\bar{{t}}}=\dot{\bar{{\theta }}}, \end{aligned}$$
(A6)
$$\begin{aligned}&\tilde{M}_\mathrm{i} \frac{\hbox {d}\dot{\bar{{\theta }}}}{\hbox {d}\bar{{t}}}+\tilde{C}_\mathrm{i} \dot{\bar{{\theta }}}+\tilde{K}_\mathrm{i} \theta =-\tilde{M}_\mathrm{e} \frac{\hbox {d}\dot{\bar{{\theta }}}}{\hbox {d}\bar{{t}}}-\tilde{C}_\mathrm{e} \dot{\bar{{\theta }}}-\tilde{K}_\mathrm{e} \theta . \end{aligned}$$
(A7)

Scheme C discretizes Eqs. (A6) and (A7) as

$$\begin{aligned}&\theta _{n+1} =\theta _n +\frac{\Delta \bar{{t}}}{2}\left( {\dot{\bar{{\theta }}}_{n+1} +\dot{\bar{{\theta }}}_n } \right) , \end{aligned}$$
(A8)
$$\begin{aligned}&\dot{\bar{{\theta }}}_{n+1} \left( {1+\frac{\Delta \bar{{t}}\tilde{C}_\mathrm{i} }{\tilde{M}_\mathrm{i} }} \right) + \frac{\Delta \bar{{t}}\tilde{K}_\mathrm{i} }{\tilde{M}_\mathrm{i} }\theta _{n+1} \nonumber \\&\quad =\dot{\bar{{\theta }}}_n -\frac{\tilde{M}_\mathrm{e} }{\tilde{M}_\mathrm{i} }\left( {\dot{\bar{{\theta }}}_n -\dot{\bar{{\theta }}}_{n-1} } \right) -\frac{\Delta \bar{{t}}\tilde{C}_\mathrm{e} }{\tilde{M}_\mathrm{i} }\dot{\bar{{\theta }}}_n -\frac{\Delta \bar{{t}}\tilde{K}_\mathrm{e} }{\tilde{M}_\mathrm{i}}\theta _n, \nonumber \\&\dot{\bar{{\theta }}}_{n+1} \left( {1+\frac{\Delta \bar{{t}}\tilde{C}_\mathrm{i} }{\tilde{M}_\mathrm{i} }} \right) +\frac{\Delta \bar{{t}}\tilde{K}_\mathrm{i} }{\tilde{M}_\mathrm{i} }\theta _{n+1} \nonumber \\&\quad =\dot{\bar{{\theta }}}_n -\frac{\tilde{M}_\mathrm{e} }{\tilde{M}_\mathrm{i} }\left( {\dot{\bar{{\theta }}}_n -\dot{\bar{{\theta }}}_{n-1} } \right) -\frac{\Delta \bar{{t}}\tilde{C}_\mathrm{e} }{\tilde{M}_\mathrm{i} }\dot{\bar{{\theta }}}_n -\frac{\Delta \bar{{t}}\tilde{K}_\mathrm{e}}{\tilde{M}_\mathrm{i} }\theta _n. \end{aligned}$$
(A9)

Equation (A8) is the Crank–Nicholson discretization of Eq. (A6). To get Eq. (A9), Eq. (A7) has been discretized by treating its left-hand side of Eq. (A7) implicitly, and right-hand side explicitly. The combined linear system of Eqs. (A8) and (A9) is given as Eq. (15).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akcabay, D.T., Xiao, J. & Young, Y.L. Numerical stabilities of loosely coupled methods for robust modeling of lightweight and flexible structures in incompressible and viscous flows. Acta Mech. Sin. 33, 709–724 (2017). https://doi.org/10.1007/s10409-017-0696-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0696-1

Keywords

Navigation