Skip to main content
Log in

Effects of adenosine triphosphate concentration on motor force regulation during skeletal muscle contraction

  • Research Paper
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

We employ a mechanical model of sarcomere to quantitatively investigate how adenosine triphosphate (ATP) concentration affects motor force regulation during skeletal muscle contraction. Our simulation indicates that there can be negative cross-bridges resisting contraction within the sarcomere and higher ATP concentration would decrease the resistance force from negative cross-bridges by promoting their timely detachment. It is revealed that the motor force is well regulated only when ATP concentration is above a certain level. These predictions may provide insights into the role of ATP in regulating coordination among multiple motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schliwa, M., Woehlke, G.: Molecular motors. Nature 422, 759–765 (2003)

    Article  Google Scholar 

  2. Guérin, T., Prost, J., Martin, P., et al.: Coordination and collective properties of molecular motors: theory. Curr. Opin. Cell Biol. 22, 14–20 (2010)

    Article  Google Scholar 

  3. Mao, H.Z., Saha, M., Reyes-Aldrete, E., et al.: Structural and molecular basis for coordination in a viral DNA packaging motor. Cell Rep. 14, 2017–2029 (2016)

    Article  Google Scholar 

  4. Tanner, B.C., Daniel, T.L., Regnier, M.: Sarcomere lattice geometry influences cooperative myosin binding in muscle. PLoS Comput. Biol. 3, e115 (2016)

    Article  Google Scholar 

  5. Piazzesi, G., Reconditi, M., Linari, M., et al.: Skeletal muscle performance determined by modulation of number of myosin motors rather than motor force or stroke size. Cell 131, 784–795 (2007)

  6. Chen, B., Gao, H.: Motor force homeostasis in skeletal muscle contraction. Biophys. J. 101, 396–403 (2011)

    Article  Google Scholar 

  7. Dong, C., Chen, B.: Catch-slip bonds can be dispensable for motor force regulation during skeletal muscle contraction. Phys. Rev. E. 92, 012723 (2015)

    Article  Google Scholar 

  8. Chen, B.: Self-regulation of motor force through chemomechanical coupling in skeletal muscle contraction. J. Appl. Mech. 80, 857–865 (2013)

    Google Scholar 

  9. Siemankowski, R.F., Wiseman, M.O., White, H.D.: ADP dissociation from actomyosin subfragment 1 is sufficiently slow to limit the unloaded shortening velocity in vertebrate muscle. Proc. Natl. Acad. Sci. USA 82, 658–662 (1985)

    Article  Google Scholar 

  10. Cooke, R., Bialek, W.: Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys. J. 28, 241 (1979)

    Article  Google Scholar 

  11. Stienen, G.J., Laarse, W.J.V.D., Elzinga, G.: Dependency of the force–velocity relationships on Mg ATP in different types of muscle fibers from Xenopus laevis. Biophys. J. 53, 849–855 (1988)

    Article  Google Scholar 

  12. Ferenczi, M.A., Goldman, Y.E., Simmons, R.M.: The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J. Physiol. (Oxford, U.K.) 350, 519–543 (1984)

    Article  Google Scholar 

  13. Erdmann, T., Schwarz, U.S.: Bistability of cell-matrix adhesions resulting from nonlinear receptor-ligand dynamics. Biophys. J. 91, L60–L62 (2006)

    Article  Google Scholar 

  14. Erdmann, T., Schwarz, U.S.: Impact of receptor-ligand distance on adhesion cluster stability. Eur. Phys. J. E 22, 123–137 (2007)

    Article  Google Scholar 

  15. Piazzesi, G., Lombardi, V.: A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68, 1966–1979 (1995)

    Article  Google Scholar 

  16. Duke, T.: Molecular model of muscle contraction. Proc. Natl. Acad. Sci. USA 96, 2770–2775 (1999)

    Article  Google Scholar 

  17. Xie, X.S.: Enzyme kinetics, past and present. Science 342, 1457–1459 (2013)

  18. Schoenberg, M.: Characterization of the myosin adenosine triphosphate (M.ATP) crossbridge in rabbit and frog skeletal muscle fibers. Biophys. J. 54, 135–148 (1988)

    Article  Google Scholar 

  19. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977)

    Article  Google Scholar 

  20. Gillespie, D.T.: A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  21. Hill, A.: The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. Ser. B. 126, 136–195 (1938)

    Article  Google Scholar 

  22. Howard, J.: Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Sunderland (2001)

    Google Scholar 

  23. Huxley, A.F., Simmons, R.M.: Mechanical properties of the cross-bridges of frog striated muscle. J. Physiol. (Oxford, U.K.) 218 Suppl, 59–60 (1971)

    Google Scholar 

  24. Morgan, K.G., Gangopadhyay, S.S.: Invited review: cross-bridge regulation by thin filament-associated proteins. J. Appl. Physiol. 91, 953–962 (2001)

    Google Scholar 

Download references

Acknowledgements

The project was supported by the National Natural Science Foundation of China (Grants 11372279, 11572285).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Dong, C. & Chen, B. Effects of adenosine triphosphate concentration on motor force regulation during skeletal muscle contraction. Acta Mech. Sin. 33, 243–249 (2017). https://doi.org/10.1007/s10409-017-0637-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-017-0637-z

Keywords

Navigation