Skip to main content
Log in

Lungenschädigung durch akute Schadstoffinhalation

Lung injury due to acute inhalation of hazardous substances

  • Leitthema
  • Published:
Der Pneumologe Aims and scope

Zusammenfassung

Nach akuter Inhalation von Schadstoffen kann es zu Schäden im Bereich der gesamten Atemwege kommen. Stoffeigenschaften und Dosis bestimmen den Depositionsort. Es resultieren die Krankheitsbilder einer toxischen Alveolitis oder eines Reactive Airways Dysfunction Syndrome (RADS). Sonderformen stellen die Inhalationsfieber dar. Die Schwere der Erkrankung reicht von milden Verläufen bis hin zu einer lebensbedrohlichen toxischen Alveolitis. Die Diagnostik stützt sich im Wesentlichen auf den engen zeitlichen Zusammenhang zwischen einer akuten Schadstoffinhalation und den Beschwerden bzw. dem Krankheitsbild. Die Therapie der toxischen Inhalationsschäden ist primär supportiv. Der Einsatz einer Therapie mit Kortikosteroiden ist in Abhängigkeit vom Krankheitsbild und vom inhalierten Schadstoff differenziert zu entscheiden.

Abstract

Acute exposure to toxic substances can lead to inhalation injury of the whole respiratory tract. The site of deposition is dependent on the characteristics and the dose of the inhaled substance. This typically results in toxic alveolitis and reactive airways dysfunction syndrome (RADS), whereby inhalation fevers constitute a special form of inhalation injury. Disease severity varies from a mild course to severe lung injury with life-threatening toxic alveolitis. The diagnosis is essentially based on the demonstration of a close temporal relationship between acute inhalation of a toxic substance and the complaints and symptoms. The treatment of acute inhalation injury is primarily supportive. The administration of corticosteroids is a matter of discussion but should be decided after taking the disease entity and the inhaled toxic substance into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Literatur

  1. Fitzgerald GJ (2008) Chemical warfare and medical response during world war I. Am J Public Health 98:611–625

    Article  Google Scholar 

  2. Banauch GI, Alleyne D, Sanchez R et al (2003) Persistent hyperreactivity and reactive airway dysfunction in firefighters at the World Trade Center. Am J Respir Crit Care Med 168:54–62

    Article  Google Scholar 

  3. Prezant DJ, Weiden M, Banauch GI et al (2002) Cough and bronchial responsiveness in firefighters at the World Trade Center site. N Engl J Med 347:806–815

    Article  Google Scholar 

  4. Brooks SM, Weiss MA, Bernstein IL (1985) Reactive airways dysfunction syndrome (RADS). Chest 88(3):376–384

    Article  CAS  Google Scholar 

  5. Gorguner M, Akgun M (2010) Acute inhalation injury. Eurasian J Med 42:28–35

    Article  Google Scholar 

  6. Nemery B (2006) Inhalation injury, chemical. In: Laurent GJ, Shapiro SD (Hrsg) Encyclopedia of respiratory medicine. Elsevier, Amsterdam

    Google Scholar 

  7. Pflaumbaum W (2018) Gefahrstoffliste 2018 Gefahrstoffe am Arbeitsplatz. IFA-Report 1/2018.. ISBN 978-3864232091 (Herausgeber: Deutsche Gesetzliche Unfallversicherung (DGUV))

    Google Scholar 

  8. Pflaumbaum W, von Hahn N (2017) Grenzwerteliste 2017. Sicherheit und Gesundheitsschutz am Arbeitsplatz. IFA Report 3/2017.. ISBN 978-3864231872 (Herausgeber: Deutsche Gesetzliche Unfallversicherung (DGUV))

    Google Scholar 

  9. Sennekamp J, Merget R (2009) Toxische Alveolitiden (Pneumonitiden) durch anorganische Substanzen. In: Letzel S, Nowak D (Hrsg.) Handbuch der Arbeitsmedizin, 13. Ergänzungslieferung 07/2009. ecomed Medizin, Landsberg

    Google Scholar 

  10. Dietrich A, Steinritz D, Gudermann T (2017) Transient receptor potential (TRP) channels as molecular targets in lung toxicology and associated diseases. Cell Calcium 67:123–137

    Article  CAS  Google Scholar 

  11. Andres D, Keyser B, Benton B et al (2016) Transient receptor potential (TRP) channels as a therapeutic target for intervention of respiratory effects and lethality from phosgene. Toxicol Lett 244:21–27

    Article  CAS  Google Scholar 

  12. Filipczak PT, Senft AP, Seagrave J et al (2015) NOS-2 inhibition in phosgene-induced acute lung injury. Toxicol Sci 146:89–100

    Article  CAS  Google Scholar 

  13. Grainge C, Brown R, Jugg BJ et al (2009) Early treatment with nebulised salbutamol worsens physiological measures and does not improve survival following phosgene induced acute lung injury. J R Army Med Corps 155:105–109

    Article  CAS  Google Scholar 

  14. Holmes WW, Keyser BM, Paradiso DC et al (2016) Conceptual approaches for treatment of phosgene inhalation-induced lung injury. Toxicol Lett 244:8–20

    Article  CAS  Google Scholar 

  15. Li W, Pauluhn J (2017) Phosgene-induced acute lung injury (ALI): differences from chlorine-induced ALI and attempts to translate toxicology to clinical medicine. Clin Transl Med 6:19

    Article  Google Scholar 

  16. Pauluhn J, Hai CX (2011) Attempts to counteract phosgene-induced acute lung injury by instant high-dose aerosol exposure to hexamethylenetetramine, cysteine or glutathione. Inhal Toxicol 23:58–64

    Article  CAS  Google Scholar 

  17. Shen J, Gan Z, Zhao J et al (2014) Ulinastatin reduces pathogenesis of phosgene-induced acute lung injury in rats. Toxicol Ind Health 30:785–793

    Article  Google Scholar 

  18. Seifert SA, Von Essen S, Jacobitz K et al (2003) Organic dust toxic syndrome: a review. J Toxicol Clin Toxicol 41:185–193

    Article  CAS  Google Scholar 

  19. Tarlo SM, Lemiere C (2014) Occupational asthma. N Engl J Med 370:640–649

    Article  CAS  Google Scholar 

  20. Monsé C, Hagemeyer O, Raulf M et al (2018) Concentration-dependent systemic response after inhalation of nano-sized zinc oxide particles in human volunteers. Part Fibre Toxicol 15:8

    Article  Google Scholar 

  21. BASF (2016) Medizinische Leitlinien bei akuten Einwirkungen von chemischen Substanzen. Phosgen (COCl2). Stand 2016 Code: D001-006

    Google Scholar 

  22. van Helden HP, van de Meent D, Oostdijk JP et al (2004) Protection of rats against perfluoroisobutene (PFIB)-induced pulmonary edema by curosurf and N‑acetylcysteine. Inhal Toxicol 16:549–564

    Article  Google Scholar 

  23. Lailey AF (1997) Oral N‑acetylcysteine protects against perfluoroisobutene toxicity in rats. Hum Exp Toxicol 16:212–216

    Article  CAS  Google Scholar 

  24. Lailey AF, Hill L, Lawston IW et al (1991) Protection by cysteine esters against chemically induced pulmonary oedema. Biochem Pharmacol 42(Suppl):S47–S54

    Article  CAS  Google Scholar 

  25. Reichelt H (1984) Toxizität und Wirkungsweise praktisch bedeutsamer Fluorcarbone – Proyphylaxe und Therapie von Intoxikationen. Z Gesamte Hyg 30:204–208

    CAS  PubMed  Google Scholar 

  26. Grainge C, Rice P (2010) Management of phosgene-induced acute lung injury. Clin Toxicol (Phila) 48:497–508

    Article  CAS  Google Scholar 

  27. De Lange DW, Meulenbelt J (2011) Do corticosteroids have a role in preventing or reducing acute toxic lung injury caused by inhalation of chemical agents? Clin Toxicol (Phila) 49:61–71

    Article  Google Scholar 

  28. Luo S, Pauluhn J, Trübel H et al (2014) Corticosteroids found ineffective for phosgene-induced acute lung injury in rats. Toxicol Lett 229:85–92

    Article  CAS  Google Scholar 

  29. Sheridan RL (2016) Fire-related inhalation injury. N Engl J Med 375:464–469

    Article  Google Scholar 

  30. Aslan S, Kandiş H, Akgun M et al (2006) The effect of nebulized NaHCO3 treatment on “RADS” due to chlorine gas inhalation. Inhal Toxicol 18:895–900

    Article  CAS  Google Scholar 

  31. Bosse GM (1994) Nebulized sodium bicarbonate in the treatment of chlorine gas inhalation. J Toxicol Clin Toxicol 32:233–241

    Article  CAS  Google Scholar 

  32. Chen J, Mo Y, Schlueter CF et al (2013) Inhibition of chlorine-induced pulmonary inflammation and edema by mometasone and budesonide. Toxicol Appl Pharmacol 272:408–413

    Article  CAS  Google Scholar 

  33. Kim JA, Yoon SY, Cho SY et al (2014) Acute health effects of accidental chlorine gas exposure. Ann Occup Environ Med 26:29

    Article  Google Scholar 

  34. Cummings KJ, Kreiss K (2015) Occupational and environmental bronchiolar disorders. Semin Respir Crit Care Med 36:366–378

    Article  Google Scholar 

  35. Harbison R et al (2015) Section III, nitrogen compounds. In: Hamilton & Hardy’s industrial toxicology, 6. Aufl. Wiley, Boston, S 363. ISBN 978-0470929735

    Chapter  Google Scholar 

  36. Commins BT, Raveney FJ, Jesson MW (1971) Toxic gases in tower silos. Ann Occup Hyg 14:275–283

    CAS  PubMed  Google Scholar 

  37. Spiegel-Ciobanu VE, Zschiesche W (2014) Best practice document on exposure to nitrogen oxides (NO/NO2) in welding. Weld World 58:499–510

    Article  CAS  Google Scholar 

  38. Berufsgenossenschaft Holz und Metall (Hrsg) (2016) Schadstoffe beim Schweißen und bei verwandten Verfahren. DGUV Information 211-016 (Ausgabe: November 2012/Nachdruck: März 2016)

    Google Scholar 

  39. Sørli JB, Hansen JS, Nørgaard AW et al (2015) An in vitro method for predicting inhalation toxicity of impregnation spray products. ALTEX 32:101–111

    PubMed  Google Scholar 

  40. Alarie Y (2002) Toxicity of fire smoke. Crit Rev Toxicol 32:259–289

    Article  CAS  Google Scholar 

  41. Saeed O, Boyer NL, Pamplin JC et al (2018) Injury and toxic industrial chemical exposure. Mil Med 183(Suppl 2):130–132

    Article  Google Scholar 

  42. Walker PF, Buehner MF, Wood LA et al (2015) Diagnosis and management of inhalation injury: an updated review. Crit Care 19:351

    Article  Google Scholar 

  43. Maybauer MO, Rehberg S, Traber DL et al (2009) Pathophysiology of acute lung injury in severe burn and smoke inhalation injury. Anaesthesist 58:805–812

    Article  CAS  Google Scholar 

  44. Sennekamp J, Lehmann E, Joest M (2015) Berufsbedingte exogen-allergische Alveolitis. Arbeitsmed Sozialmed Umweltmed 50:38–52

    Google Scholar 

  45. Smit LA, Wouters IM, Hobo MM et al (2006) Agricultural seed dust as a potential cause of organic dust toxic syndrome. Occup Environ Med 63:59–67

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Steiner.

Ethics declarations

Interessenkonflikt

C. Steiner, C. Eisenhawer und R. Merget geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

Redaktion

D. Ukena, Bremen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steiner, C., Eisenhawer, C. & Merget, R. Lungenschädigung durch akute Schadstoffinhalation. Pneumologe 16, 160–167 (2019). https://doi.org/10.1007/s10405-019-0241-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10405-019-0241-y

Schlüsselwörter

Keywords

Navigation