Skip to main content
Log in

Dynamics of isolated confined air bubbles in liquid flows through circular microchannels: an experimental and numerical study

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Experimental and numerical studies are performed to characterise the dynamics of isolated confined air bubbles in laminar fully developed liquid flows within channels of diameters d = 0.5 mm and d = 1 mm. Water and glycerol are used as the continuous liquid phase, and therefore, a large range of flow capillary numbers 10−4 < Ca < 10−1 and Reynolds numbers 10−3 < Re < 103 are covered. An extensive investigation is performed on the effect of bubble size and flow capillary number on different flow parameters, such as the shape and velocity of bubbles, thickness of the liquid film formed between the bubbles and the channel wall, and the development lengths in front and at the back of the bubbles. The micro-particle shadow velocimetry technique (μPSV) is employed in the experimental measurements allowing simultaneous quantification of important flow parameters using a single sequence of high-speed greyscale images recorded at each test condition. Bubble volume and flow rate of the continuous liquid phase are precisely determined in the post-processing stage using the μPSV images. These parameters are then used as initial and boundary conditions to set up CFD simulations reproducing the corresponding two-phase flow. Simulations based on the volume of fluid technique with the aim of capturing the interface dynamics are performed with both ANSYS Fluent v. 14.5, here augmented by implementing self-defined functions to improve the accuracy of the surface tension force estimation, and ESI OpenFOAM v. 2.1.1. The present approach not only results in valuable findings on the underlying physics involved in the problem of interest but also allows us to directly compare and validate results that are currently obtained by the experimental and computational methods. It is believed that similar methodology can be employed to rigorously investigate more complex two-phase flow regimes in micro-geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abiev R, Lavretsov I (2012) Intensification of mass transfer from liquid to capillary wall by Taylor vortices in minichannels, bubble velocity and pressure drop. Chem Eng Sci 74:59–68

    Article  Google Scholar 

  • Aubin J, Ferrando M, Jiricny V (2010) Current methods for characterising mixing and flow in microchannels. Chem Eng Sci 65:2065–2093

    Article  Google Scholar 

  • Aussillous P, Quéré D (2000) Quick deposition of a fluid on the wall of a tube. Phys Fluids 12:2367–2371

    Article  Google Scholar 

  • Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100:335–354

    Article  MATH  MathSciNet  Google Scholar 

  • Bretherton F (1961) The motion of long bubbles in tubes. J Fluid Mech 10:166–188

    Article  MATH  MathSciNet  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI 8:679–698

    Article  Google Scholar 

  • Chen J (1986) Measuring the film thickness surrounding a bubble inside a capillary. J Colloid Interface Sci 109:341–349

    Article  Google Scholar 

  • Chen Y, Kulenovic R, Mertz R (2009) Numerical study of the formation of Taylor bubbles in capillary tubes. Int J Therm Sci 48:234–242

    Article  Google Scholar 

  • Clift R, Grace J, Weber M (1978) Bubble, drops, and particles. Dover Publications, Mineola, New York

    Google Scholar 

  • Cummins SJ, Francois MM, Kothe DB (2005) Estimating curvature from volume fractions. Comput Struct 83:425–434

    Article  Google Scholar 

  • de Ryck A (2002) The effect of weak inertia on the emptying of a tube. Phys Fluids 14:2101

    Google Scholar 

  • Deshpande SS, Anumolu L, Trujillo MF (2012) Evaluating the performance of the two-phase flow solver interFoam. Comput Sci Discov 5:1–36

    Article  Google Scholar 

  • Edvinsson R, Irandoust S (1996) Finite-element analysis of Taylor flow. AIChE 42:1815–1823

    Article  Google Scholar 

  • Fairbrother F, Stubbs A (1935) Studies in electro-endosmosis. Part VI. The “bubble-tube” method of measurement. J Chem Soc 1:527–529

    Article  Google Scholar 

  • Feng JQ (2010) Steady axisymmetric motion of a small bubble in a tube with flowing liquid. Proc R Soc A 466:549–562

    Article  MATH  Google Scholar 

  • Ghaini A, Mescher A, Agar DW (2011) Hydrodynamic studies of liquid–liquid slug flows in circular microchannels. Chem Eng Sci 66:1168–1178

    Article  Google Scholar 

  • Giavedoni M, Saita F (1999) The rear meniscus of a long bubble steadily displacing a newtonian liquid in a capillary tube. Phys Fluids 11:786–794

    Article  MATH  MathSciNet  Google Scholar 

  • Goldsmith H, Mason S (1963) The flow of suspensions through tubes. II. Single large bubbles. J Colloid Sci 18:237–261

    Article  Google Scholar 

  • Gregorc J, Zun I (2013) Inlet conditions effect on bubble to slug flow transition in mini-channels. Chem Eng Sci 102:106–120

    Article  Google Scholar 

  • Gu H, Duits MHG, Mugele F (2011) Droplets formation and merging in two-phase flow microfluidics. Int J Mol Sci 12:2572–2597

    Article  Google Scholar 

  • Gunnasegaran P, Mohammed H, Shuaib N, Saidur R (2010) The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int Commun Heat Mass Transf 37:1078–1086

    Article  Google Scholar 

  • Gupta R, Fletcher DF, Haynes BS (2009) On the CFD modelling of Taylor flow in microchannels. Chem Eng Sci 64:2941–2950

    Article  Google Scholar 

  • Han Y, Shikazono N (2009) Measurement of the liquid film thickness in micro tube slug flow. Int J Heat Fluid Flow 30:842–853

    Article  Google Scholar 

  • He Q, Hasegawa Y, Kasagi N (2010) Heat transfer modelling of gas–liquid slug flow without phase change in a micro tube. Int J Heat Fluid Flow 31:126–136

    Article  Google Scholar 

  • Heil M (2001) Finite Reynolds number effects in the Bretherton problem. Phys Fluids 13:2517–2521

    Article  MathSciNet  Google Scholar 

  • Hetsroni G, Haber S, Wacholder E (1970) The flow fields in and around a droplet moving axially within a tube. J Fluid Mech 41:689–705

    Article  MATH  Google Scholar 

  • Hirt CW, Nichols BD (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Comput Phys 39:201–225

    Article  MATH  Google Scholar 

  • Ho B, Leal L (1975) The creeping motion of liquid drops through a circular tube of comparable diameter. J Fluid Mech 71:361–383

    Article  Google Scholar 

  • Hoang DA, van Steijn V, Portela LM, Kreutzer MT, Kleijn CR (2013) Benchmark numerical simulations of segmented two-phase flows in microchannels using the volume of fluid method. Comput Fluids 86:28–36

    Article  MATH  Google Scholar 

  • Hsu R, Secomb T (1989) Motion of nonaxisymmetric red blood cells in cylindrical capillaries. J Biomech Eng 111:147–151

    Article  Google Scholar 

  • Hyman WA, Skalak R (1972) Viscous flow of a suspension of liquid drops in a cylindrical tube. Appl Sci Res 26:27–52

    Article  MATH  Google Scholar 

  • Inoue S, Spring K (1997) Video microscopy: the fundamentals. Plenum, New York

    Book  Google Scholar 

  • Issa RI (1985) Solution of the implicitly discretized fluid flow equations by operator-splitting. J Comput Phys 62:40–65

    Article  MathSciNet  Google Scholar 

  • JPIV (2013) Java Particle Image Velocimetry. http://www.jpiv.vennemann-online.de

  • Kashid M, Agar D (2007) Hydrodynamics of liquid–liquid slug flow capillary microreactor: flow regimes, slug size and pressure drop. Chem Eng J 131:1–13

    Article  Google Scholar 

  • Kashid MN, Renken A, Kiwi-Minsker L (2011) Gas–liquid and liquid–liquid mass transfer in microstructured reactors. Chem Eng Sci 66:3876–3897

    Article  Google Scholar 

  • Khodaparast S, Borhani N, Tagliabue G, Thome JR (2013) A micro particle shadow velocimetry (μPSV) technique to measure flows in microchannels. Exp Fluids 54:1474

    Article  Google Scholar 

  • Khodaparast S, Borhani N, Thome JR (2014) Application of micro particle shadow velocimetry μPSV to two-phase flows in microchannels. Int J Multiph Flow 62:123–133

    Article  Google Scholar 

  • Kreutzer M, Kapteijn F, Moulijn J, Kleijn C, Heiszwolf J (2005) Inertial and interfacial effects on pressure drop of Taylor flow in capillaries. AIChE 51:2428–2440

    Article  Google Scholar 

  • Lac E, Sherwood J (2009) Motion of a drop along the centreline of a capillary in a pressure-driven flow. J Fluid Mech 640:27–54

    Article  MATH  MathSciNet  Google Scholar 

  • Lafaurie B, Nardone C, Scardovelli R, Zaleski S, Zanetti G (1994) Modelling merging and fragmentation in multiphase flows with SURFER. J Comput Phys 113:134–147

    Article  MATH  MathSciNet  Google Scholar 

  • Lakehal D, Larrignon G, Narayanan C (2008) Computational heat transfer and two-phase flow topology in miniature tubes. Microfluid Nanofluid 4:261–271

    Article  Google Scholar 

  • Li Z, He YL, Tang GH, Tao WQ (2007) Experimental and numerical studies of liquid flow and heat transfer in microtubes. Int J Heat Mass Transf 50:3447–3460

    Article  MATH  Google Scholar 

  • Magnini M (2012) CFD modeling of two-phase boiling flows in the slug flow regime with an interface capturing technique. Ph.D. thesis, Alma Mater Studiorum—Università di Bologna, Bologna, Italy

  • Magnini M, Pulvirenti B, Thome JR (2013) Numerical investigation of hydrodynamics and heat transfer of elongated bubbles during flow boiling in a microchannel. Int J Heat Mass Transf 59:451–471

    Article  Google Scholar 

  • Martinez M, Udell K (1989) Boundary integral analysis of the creeping flow of long bubbles in capillaries. J Appl Mech 56:211–217

    Article  MATH  Google Scholar 

  • Martinez M, Udell K (1990) Axisymmetric creeping motion of drops through circular tubes. J Fluid Mech 210:565–591

    Article  MATH  Google Scholar 

  • Mehdizadeh A, Sherif SA, Lear WE (2011) Numerical simulation of thermofluid characteristics of two-phase slug flow in microchannels. Int J Heat Mass Transf 54:3457–3465

    Article  MATH  Google Scholar 

  • Mukherjee A, Kandlikar SG, Edel ZJ (2011) Numerical study of bubble growth and wall heat transfer during flow boiling in a microchannel. Int J Heat Mass Transf 54:3702–3718

    Article  MATH  Google Scholar 

  • Olbricht WL, Leal LG (1982) The creeping motion of liquid drops through a circular tube of comparable diameter: the effect of density differences between the fluids. J Fluid Mech 115:187–216

    Article  Google Scholar 

  • Pattamatta A, Freystein M, Stephan P (2014) A parametric study on phase change heat transfer due to Taylor–Bubble coalescence in a square minichannel. Int J Heat Mass Transf 76:16–32

    Article  Google Scholar 

  • Pozrikidis C (2005) Axisymmetric motion of a file of red blood cells through capillaries. Phys Fluids 17:031503

    Article  MathSciNet  Google Scholar 

  • Qian D, Lawal A (2006) Numerical study on gas and liquid slugs for taylor flow in a T-junction microchannel. Chem Eng Sci 61:7609–7625

    Article  Google Scholar 

  • Qu W, Mala G, Li D (2000) Heat transfer for water flow in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:3925–3936

    Article  MATH  Google Scholar 

  • Ribatski G, Wojtan L, Thome JR (2006) An analysis of experimental data and prediction methods for two-phase frictional pressure drop and flow boiling heat transfer in micro-scale channels. Exp Therm Fluid Sci 31:1–19

    Article  Google Scholar 

  • Seemann R, Brinkmann M, Pfohl T, Herminghaus S (2012) Droplet based microfluidics. Rep Prog Phys 75:016601

    Article  Google Scholar 

  • Talimi V, Muzychka Y, Kocabiyik S (2012) A review on numerical studies of slug flow hydrodynamics and heat transfer in microtubes and microchannels. Int J Multiph Flow 39:88–104

    Article  Google Scholar 

  • Taylor G (1961) Deposition of a viscous fluid on the wall of a tube. Sens Actuator 133:317–322

    Google Scholar 

  • Teh S, Lin R, Hung L, Lee A (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  Google Scholar 

  • Theberge A, Courtois F, Schaerli Y, Fischlechner M, Abell C, Hollfelder F, Huck W (2010) Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Edit 49:5846–5868

    Article  Google Scholar 

  • Triplett K, Ghiaasiaan S, Abdel-Khalik S, Sadowski D (1999) Gas–liquid two-phase flow in microchannels. Part I: two-phase flow patterns. Int J Multiph Flow 25:377–394

    Article  MATH  Google Scholar 

  • Tung K, Li C, Yang J (2009) Mixing and hydrodynamic analysis of a droplet in a planar serpentine micromixer. Microfluid Nanofluid 7:545–557

    Article  Google Scholar 

  • van Baten J, Krishna R (2004) CFD simulations of mass transfer from Taylor bubbles rising in circular capillaries. Chem Eng Sci 59:2535–2545

    Article  Google Scholar 

  • van Leer B (1979) Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J Comput Phys 32:101–136

    Article  Google Scholar 

  • Waelchli S, von Rohr PR (2006) Two-phase flow characteristics in gas–liquid microreactors. Int J Multiph Flow 32:791–806

    Article  MATH  Google Scholar 

  • Wegmann A, von Rohr PR (2006) Two phase liquid–liquid flows in pipes of small diameters. Int J Multiph Flow 32:1017–1028

    Article  MATH  Google Scholar 

  • Weller H (2008) A new approach to VOF-based interface capturing methods for incompressible and compressible flows. Technical report, OpenCFD Ltd

  • Williams S, Park C, Wereley S (2010) Advances and applications on microfluidic velocimetry techniques. Microfluid Nanofluid 8:709–726

    Article  Google Scholar 

  • Wörner M (2012) Numerical modeling of multiphase flows in microfluidics and micro process engineering: a review of methods and applications. Microfluid Nanofluid 12:841–886

    Article  Google Scholar 

  • Youngs D (1982) Time-dependent multi-material flow with large fluid distortion. In: Morton K, Baines M (eds) Numerical methods for fluid dynamics. Academic Press, London, pp 273–285

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Magnini.

Appendix 1: Selected experimental data

Appendix 1: Selected experimental data

This appendix reports, in a tabular form, the flow parameters characterising the flow conditions (fluids, channel diameter d, dispersed phase volume \(V_d\), and mean liquid flow velocity \(\overline{U}_{c}\)) and results (dispersed phase velocity \({U}_{d}\), dimensionless liquid film thickness δ*, dimensionless diameter of the fitted sphere to the bubble nose \({d_{\rm nose}}^{*}\) and tail \({d_{\rm tail}}^{*}\)) for 22 selected experimental runs, whose corresponding bubbles shape are displayed in Figs. 5a, b, 9 and 10 of the present paper. These data are useful for benchmarking computational codes aimed to simulate the confined small and elongated bubbles in liquid flows within narrow channels.

The experimental test conditions are the following:

  • Temperature: 25 °C.

  • Density: water 997 kg/m3, glycerol solution 1250 kg/m3, air 1.204 kg/m3.

  • Viscosity: water 0.88 mPa·s, glycerol solution 550 mPa·s, air 0.019 mPa·s.

  • Surface tension: air–water 72.8 mN/m, air–glycerol 63.4 mN/m.

Case

Fluids

d (μm)

\(V_d\) [μl]

\(\overline{U}_{c}\) [m/s]

\({U}_{d}\) [m/s]

δ* [–]

\({d_{\rm nose}}^{*}\) [–]

\({d_{\rm tail}}^{*}\) [–]

1. Figure 5a, \({{d}_{eq}}^{*}=0.354\)

Air–glycerol

494

0.0028

0.00553

0.01033

0.35

0.36

2. Figure 5a, \({{d}_{eq}}^{*}=0.513\)

Air–glycerol

494

0.0085

0.00454

0.00777

0.50

0.54

3. Figure 5a, \({{d}_{eq}}^{*}=0.677\)

Air–glycerol

494

0.0196

0.00360

0.00599

0.62

0.74

4. Figure 5a, \({{d}_{eq}}^{*}=0.747\)

Air–glycerol

494

0.0263

0.00451

0.00713

0.67

0.81

5. Figure 5a, \({{d}_{eq}}^{*}=0.813\)

Air–glycerol

494

0.0339

0.00463

0.00708

0.69

0.92

6. Figure 5a, \({{d}_{eq}}^{*}=1.047\)

Air–glycerol

494

0.0724

0.00435

0.00568

0.72

1.06

7. Figure 5a, \({{d}_{eq}}^{*}=1.189\)

Air–glycerol

494

0.1061

0.00454

0.00599

0.065

0.68

1.07

8. Figure 5b, \({{d}_{eq}}^{*}=0.789\)

Air–water

514

0.0349

0.0454

0.0533

0.79

0.79

9. Figure 5b, \({{d}_{eq}}^{*}=0.852\)

Air–water

514

0.0439

0.0593

0.0697

0.85

0.85

10. Figure 5b, \({{d}_{eq}}^{*}=0.946\)

Air–water

514

0.0602

0.0557

0.0607

0.95

0.97

11. Figure 5b, \({{d}_{eq}}^{*}=1.016\)

Air–water

514

0.0745

0.0534

0.0550

0.94

0.99

12. Figure 5b, \({{d}_{eq}}^{*}=1.386\)

Air–water

514

0.1893

0.0543

0.0554

0.006

0.94

0.99

13. Figure 9a, Ca = 0.008

Air–glycerol

494

0.1970

0.00084

0.00095

0.026

0.85

1.00

14. Figure 9b, Ca = 0.052

Air–glycerol

494

0.1061

0.00450

0.00600

0.062

0.69

1.05

15. Figure 9c, Ca = 0.075

Air–glycerol

494

0.1086

0.00618

0.00871

0.075

0.64

1.11

16. Figure 9d, Ca = 0.098

Air–glycerol

494

0.1231

0.00777

0.01137

0.083

0.61

1.14

17. Figure 9e, Ca = 0.163

Air–glycerol

494

0.0780

0.01145

0.01888

0.099

0.60

1.05

18. Figure 10a, Ca = 0.003

Air–water

514

0.1751

0.242

0.261

0.013

0.89

0.96

19. Figure 10b, Ca = 0.008

Air–water

514

0.1715

0.666

0.704

0.023

0.82

1.03

20. Figure 10c, Ca = 0.0098

Air–water

514

0.2208

0.757

0.815

0.025

0.78

1.05

21. Figure 10d, Ca = 0.015

Air–water

514

0.1882

1.118

1.293

0.039

0.72

1.23

22. Figure 10e, Ca = 0.023

Air–water

514

0.2179

1.580

1.944

0.054

0.64

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaparast, S., Magnini, M., Borhani, N. et al. Dynamics of isolated confined air bubbles in liquid flows through circular microchannels: an experimental and numerical study. Microfluid Nanofluid 19, 209–234 (2015). https://doi.org/10.1007/s10404-015-1566-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-015-1566-4

Keywords

Navigation