Skip to main content
Log in

Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices

  • Review Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

This review provides an overview of major microengineering emulsification techniques for production of monodispersed droplets. The main emphasis has been put on membrane emulsification using Shirasu Porous Glass and microsieve membrane, microchannel emulsification using grooved-type and straight-through microchannel plates, microfluidic junctions and flow focusing microfluidic devices. Microfabrication methods for production of planar and 3D poly(dimethylsiloxane) devices, glass capillary microfluidic devices and single-crystal silicon microchannel array devices have been described including soft lithography, glass capillary pulling and microforging, hot embossing, anisotropic wet etching and deep reactive ion etching. In addition, fabrication methods for SPG and microseive membranes have been outlined, such as spinodal decomposition, reactive ion etching and ultraviolet LIGA (Lithography, Electroplating, and Moulding) process. The most widespread application of micromachined emulsification devices is in the synthesis of monodispersed particles and vesicles, such as polymeric particles, microgels, solid lipid particles, Janus particles, and functional vesicles (liposomes, polymersomes and colloidosomes). Glass capillary microfluidic devices are very suitable for production of core/shell drops of controllable shell thickness and multiple emulsions containing a controlled number of inner droplets and/or inner droplets of two or more distinct phases. Microchannel emulsification is a very promising technique for production of monodispersed droplets with droplet throughputs of up to 100 l h−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Abate AR, Weitz DA (2009) High-order multiple emulsions formed in poly(dimethylsiloxane) microfluidics. Small 5:2030–2032

    Article  Google Scholar 

  • Abate AR, Lee D, Do T, Holtze C, Weitz DA (2008) Glass coating for PDMS microfluidic channels by sol–gel methods. Lab Chip 8:516–518

    Article  Google Scholar 

  • Abate AR, Thiele J, Weitz DA (2011) One-step formation of multiple emulsions in microfluidics. Lab Chip 11:253–258

    Article  Google Scholar 

  • Abdelgawad M, Wu C, Chien WY, Geddie WR, Jewett MAS, Sun Y (2011) A fast and simple method to fabricate circular microchannels in polydimethylsiloxane (PDMS). Lab Chip 11:545–551

    Article  Google Scholar 

  • Abrahamse AJ, van der Padt A, Boom RM, de Heij WBC (2001) Process fundamentals of membrane emulsification: simulation with CFD. AIChE J 47:1285–1291

    Article  Google Scholar 

  • Altenbach-Rehm J, Schubert H, Suzuki K (2002) Premix-Membranemulgieren mittels hydrophiler und hydrophober PTFE-Membranen zur Herstellung von O/W-Emulsionen mit enger Tropfengrößenverteilung. Chem Ing Technol 74:587–588

    Article  Google Scholar 

  • Andersson H, van den Berg A (2003) Microfluidic devices for cellomics: a review. Sens Actuators B 92:315–325

    Article  Google Scholar 

  • Anna SL, Mayer HC (2006) Microscale tipstreaming in a microfluidic flow focusing device. Phys Fluids 18:121512

    Article  Google Scholar 

  • Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using ‘‘flow focusing’’ in microchannels. Appl Phys Lett 82:364–366

    Article  Google Scholar 

  • Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655

    Article  Google Scholar 

  • Bauer WAC, Fischlechner M, Abell C, Huck WTS (2010) Hydrophilic PDMS microchannels for high-throughput formation of oil-in-water microdroplets and water-in-oil-in-water double emulsions. Lab Chip 10:1814–1819

    Article  Google Scholar 

  • Brans G, Kromkamp J, Pek N, Gielen J, Heck J, van Rijn CJM, van der Sman RGM, Schroën CGPH, Boom RM (2006) Evaluation of microsieve membrane design. J Membr Sci 278:344–348

    Article  Google Scholar 

  • Breslauer DN, Muller SJ, Lee LP (2010) Generation of monodisperse silk microspheres prepared with microfluidics. Biomacromolecules 11:643–647

    Article  Google Scholar 

  • Cabral JT, Hudson SD (2006) ’Microfluidic approach for rapid multicomponent interfacial tensiometry’. Lab Chip 6:427–436

    Article  Google Scholar 

  • Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79:209–218

    Article  Google Scholar 

  • Chen CT, Lee GB (2006) ‘Formation of microdroplets in liquids utilizing active pneumatic choppers on a microfluidic chip. J Microelectromech Syst 15:1492–1498

    Article  MathSciNet  Google Scholar 

  • Chen GG, Luo GS, Xu JH, Wang JD (2004a) Membrane dispersion precipitation method to prepare nanopartials. Powder Technol 139:180–185

    Article  Google Scholar 

  • Chen GG, Luo GS, Sun Y, Xu JH, Wang JD (2004b) A ceramic microfiltration tube membrane dispersion extractor. AIChE J 50:382–387

    Article  Google Scholar 

  • Chen H, Li J, Shum HC, Stone HA, Weitz DA (2011) Breakup of double emulsions in constrictions. Soft Matter 7:2345–2347

    Article  Google Scholar 

  • Choi CH, Jung JH, Rhee YW, Kim DP, Shim SE, Lee CS (2007) Generation of monodisperse alginate microbeads and in situ encapsulation of cell in microfluidic device. Biomed Microdev 9:855–862

    Article  Google Scholar 

  • Christov NC, Danov KD, Danova DK, Kralchevsky PA (2008) The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces. Langmuir 24:1397–1410

    Article  Google Scholar 

  • Chu LY, Xie R, Zhu JH, Chen WM, Yamaguchi T, Nakao S (2003) Study of SPG membrane emulsification processes for the preparation of monodisperse core–shell microcapsules. J Colloid Interface Sci 265:187–196

    Article  Google Scholar 

  • Chu LY, Utada AS, Shah RK, Kim JW, Weitz DA (2007) Controllable monodisperse multiple emulsions. Angew Chem Int Ed 119:9128–9132

    Google Scholar 

  • Chuah AM, Kuroiwa T, Kobayashi I, Zhang X, Nakajima M (2009a) Preparation of uniformly sized alginate microspheres using the novel combined methods of microchannel emulsification and external gelation. Colloid Surf A 351:9–17

    Article  Google Scholar 

  • Chuah AM, Kuroiwa T, Kobayashi I, Nakajima M (2009b) Effect of chitosan on the stability and properties of modified lecithin stabilized oil-in-water monodisperse emulsion prepared by microchannel emulsification. Food Hydrocoll 23:600–610

    Article  Google Scholar 

  • De Luca G, Di Maio FP, Di Renzo A, Drioli E (2008) Droplet detachment in cross-flow membrane emulsification: comparison among torque- and force-based models. Chem Eng Process 47:1150–1158

    Article  Google Scholar 

  • De Menech M, Garstecki P, Jousse F, Stone HA (2008) Transition from squeezing to dripping in a microfluidic T-shaped junction. J Fluid Mech 595:141–161

    MATH  Google Scholar 

  • Dendukuri D, Tsoi K, Hatton TA, Doyle PS (2005) Controlled synthesis of nonspherical microparticles using microfluidics. Langmuir 21:2113–2116

    Article  Google Scholar 

  • Dowding PJ, Goodwin JW, Vincent B (2001) Production of porous suspension polymer beads with a narrow size distribution using a cross-flow membrane and a continuous tubular reactor. Colloid Surf A 180:301–309

    Article  Google Scholar 

  • Dragosavac MM, Sovilj MN, Kosvintsev SR, Holdich RG, Vladisavljević GT (2008) Controlled production of oil-in-water emulsions containing unrefined pumpkin seed oil using stirred cell membrane emulsification. J Membr Sci 322:178–188

    Article  Google Scholar 

  • Egidi E, Gasparini G, Holdich RG, Vladisavljević GT, Kosvintsev SR (2008) Membrane emulsification using membranes of regular pore spacing: droplet size and uniformity in the presence of surface shear. J Membr Sci 323:414–420

    Article  Google Scholar 

  • Eusner T, Hale M, Hardt DE (2010) Process robustness of hot embossing microfluidic devices. ASME J Manuf Sci Eng 132:030920

    Article  Google Scholar 

  • Figeys D, Pinto D (2001) Proteomics on a chip: promising developments. Electrophoresis 22:208–216

    Article  Google Scholar 

  • Fuchigami T, Toki M, Nakanishi K (2000) Membrane emulsification using sol-gel derived macroporous silica glass. J Sol Gel Sci Technol 19:337–341

    Article  Google Scholar 

  • Garstecki P, Stone HA, Whitesides GM (2005) Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys Rev Lett 94 (Art. No. 164501)

  • Geerken MJ (2006) Emulsification with micro-engineered devices. PhD Thesis, University of Twente

  • Geerken MJ, Groenendijk MNW, Lammertink RGH, Wessling M (2008) Micro-fabricated metal nozzle plates used for water-in-oil and oil-in-water emulsification. J Membr Sci 310:374–383

    Article  Google Scholar 

  • Gijsbertsen-Abrahamse AJ, Van der Padt A, Boom RM (2004) Status of cross-flow membrane emulsification and outlook for industrial application. J Membr Sci 230:149–159

    Article  Google Scholar 

  • Hamada Y, Kobayashi I, Nakajima M, Sato K (2002) Optical and interfacial tension study of crystallization of n-alkane in oil-in-water emulsion using monodispersed droplets. Cryst Growth Des 2:579–584

    Article  Google Scholar 

  • Hao DX, Gong FL, Hu GH, Zhao YJ, Lian GP, Ma GH, Zhiguo S (2008) Controlling factors on droplets uniformity in membrane emulsification: experiment and modeling analysis. Chem Eng Res Des 47:6418–6425

    Article  Google Scholar 

  • Hashimoto M, Shevkoplyas SS, Zasońska B, Szymborski T, Garstecki P, Whitesides GM (2008) Formation of bubbles and droplets in parallel, coupled flow-focusing geometries. Small 4:1795–1808

    Article  Google Scholar 

  • Hatch A, Kamholz AE, Hawkins KR, Munson MS, Schilling EA, Weigl BH, Yager P (2001) A rapid diffusion immunoassay in a T-sensor. Nat Biotechnol 19:461–465

    Article  Google Scholar 

  • He M, Edgar JS, Jeffries GDM, Lorenz RM, Shelby JP, Chiu DT (2005) Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal Chem 77:1539–1544

    Article  Google Scholar 

  • Higashi S, Setoguchi T (2000) Hepatic arterial injection chemotherapy for hepatocellular carcinoma with epirubicin aqueous solution as numerous vesicles in iodinated poppy-seed oil microdroplets: clinical application of water-in-oil-in-water emulsion prepared using a membrane emulsification technique. Adv Drug Deliv Rev 45:57–64

    Article  Google Scholar 

  • Hillborg H, Tomczak N, Olàh A, Schönherr H, Vancso GJ (2004) Nanoscale hydrophobic recovery: a chemical force microscopy study of UV/ozone-treated cross-linked poly(dimethylsiloxane). Langmuir 20:785–794

    Article  Google Scholar 

  • Holdich R, Kosvintsev S, Cumming I, Zhdanov S (2006) Pore design and engineering for filters and membranes. Philos Trans R Soc A 364:161–174

    Article  Google Scholar 

  • Holdich RG, Dragosavac MM, Vladisavljević GT, Kosvintsev SR (2010) Membrane emulsification with oscillating and stationary membranes. Ind Eng Chem Res 49:3810–3817

    Article  Google Scholar 

  • Hung LH, Choi KM, Tseng WY, Tan YC, Shea KJ, Lee AP (2006) Alternating droplet generation and controlled dynamic droplet fusion in microfluidic device for CdS nanoparticle synthesis. Lab Chip 6:174–178

    Article  Google Scholar 

  • Ikkai F, Iwamoto S, Adachi E, Nakajima M (2005) New method of producing mono-sized polymer gel particles using microchannel emulsification and UV irradiation. Colloid Polym Sci 283:1149–1153

    Article  Google Scholar 

  • Ito F, Makino K (2004) Preparation and properties of monodispersed rifampicin-loaded poly(lactide-co-glycolide) microspheres. Colloid Surf B 39:17–21

    Article  Google Scholar 

  • Iwamoto S, Nakagawa K, Sugiura S, Nakajima M (2002) Preparation of gelatin microbeads with a narrow size distribution using microchannel emulsification AAPS Pharm Sci Technol 3 (article 25)

  • Jaafar-Maalej C, Charcosset C, Fessi H (2011) A new method for liposome preparation using a membrane contactor. J Liposome Res 21:213–220

    Article  Google Scholar 

  • Jiang B, Liu Y, Chu C, Qiu Q (2010) Research on microchannel of PMMA microfluidic chip under various injection molding parameters. Adv Mater Res 87–88:381–386

    Google Scholar 

  • Ji XH, Zhang NG, Cheng W, Guo F, Liu W, Guo SS, He ZK, Zhao XZ (2011) Integrated parallel microfluidic device for simultaneous preparation of multiplex optical-encoded microbeads with distinct quantum dot barcodes. J Mater Chem 21:13380-13387

    Google Scholar 

  • Joscelyne SM, Trägårdh G (2000) Membrane emulsification—a literature review. J Membr Sci 169:107–117

    Article  Google Scholar 

  • Kakazu E, Murakami T, Akamatsu K, Sugawara T, Kikuchi R, Nakao S (2010) Preparation of silver nanoparticles using the SPG membrane emulsification technique. J Membr Sci 354:1–5

    Article  Google Scholar 

  • Kameoka J, Craighead HG, Zhang HW, Henion J (2001) A polymeric microfluidic chip for CE/MS determination of small molecules. Anal Chem 73:1935–1941

    Article  Google Scholar 

  • Kanai T, Lee D, Shum HC, Shah RK, Weitz DA (2010) Gel-immobilized colloidal crystal shell with enhanced thermal sensitivity at photonic wavelengths. Adv Mater 22:4998–5002

    Article  Google Scholar 

  • Karbstein H, Schubert H (1995) Developments in the continuous mechanical production of oil-water macro-emulsions. Chem Eng Process 34:205–211

    Article  Google Scholar 

  • Kawakatsu T, Kikuchi Y, Nakajima M (1997) Regular-sized cell creation in microchannel emulsification by visual microprocessing method. J Am Oil Chem Soc 74:317–321

    Article  Google Scholar 

  • Kawakatsu T, Komori H, Nakajima M, Kikuchi Y, Komori H, Yonemoto Y (1999) Production of monodispersed oil-in-water emulsion using crossflow-type silicon microchannel plate. J Chem Eng Jpn 32:241–244

    Article  Google Scholar 

  • Kawakatsu T, Trägårdh G, Kikuchi Y, Nakajima M, Komori H, Yonemoto T (2000) Effect of microchannel structure on droplet size during crossflow microchannel emulsification. J Surfactants Deterg 3:295–302

    Article  Google Scholar 

  • Kenis PJA, Ismagilov RF, Whitesides GW (1999) Microfabrication inside capillaries using multiphase laminar flow patterning. Science 285:83–85

    Article  Google Scholar 

  • Kikuchi Y, Ohki H, Kaneko T, Sato K (1989) Microchannels made on silicon wafer for measurement of flow properties of blood cells. Biorheology 26:1055 (abstr.)

    Google Scholar 

  • Kikuchi Y, Sate K, Ohki H, Kaneko T (1992) Optically accessible microchannels formed in a single-crystal silicon substrate for studies of blood rheology. Microvasc Res 44:226–240

    Article  Google Scholar 

  • Kim H, Luo D, Link D, Weitz DA, Marquez M, Cheng Z (2007a) Controlled production of emulsion drops using an electric field in a flow-focusing microfluidic device. Appl Phys Lett 91:133106

    Article  Google Scholar 

  • Kim JW, Utada AS, Fernández-Nieves AA, Hu Z, Weitz DA (2007b) Fabrication of monodisperse gel shells and functional microgels in microfluidic devices. Angew Chem Int Ed 46:1819–1822

    Article  Google Scholar 

  • Kim SH, Shum HC, Kim JW, Cho JC, Weitz DA (2011a) Multiple polymersomes for programmed release of multiple components. J Am Chem Soc 133:15165–15171

    Google Scholar 

  • Kim SH, Kim JW, Cho JC, Weitz DA (2011b) Double-emulsion drops with ultra-thin shells for capsule templates. Lab Chip 11:3162–3166

    Article  Google Scholar 

  • Kobayashi I, Nakajima M, Chun K, Kikuchi Y, Fujita H (2002) Silicon array of elongated through-holes for monodisperse emulsion droplets. AIChE J 48:1639–1644

    Article  Google Scholar 

  • Kobayashi I, Nakajima M, Mukataka S (2003a) Preparation characteristics of oil-in-water emulsions using differently charged surfactants in straight-through microchannel emulsification. Colloid Surf A 229:33–41

    Article  Google Scholar 

  • Kobayashi I, Iitaka Y, Iwamoto S, Kimura S, Nakajima M (2003b) Preparation characteristics of lipid microspheres using microchannel emulsification and solvent evaporation methods. J Chem Eng Jpn 36:996–1000

    Article  Google Scholar 

  • Kobayashi I, Mukataka S, Nakajima M (2004a) Effect of slot aspect ratio on droplet formation from silicon straight-through microchannels. J Colloid Interface Sci 279:277–280

    Article  Google Scholar 

  • Kobayashi I, Mukataka S, Nakajima M (2004b) CFD simulation and analysis of emulsion droplet formation from straight-through microchannels. Langmuir 20:9868–9877

    Article  Google Scholar 

  • Kobayashi I, Mukataka S, Nakajima M (2005a) Production of monodisperse oil-in-water emulsions using a large silicon straight-through microchannel plate. Ind Eng Chem Res 44:5852–5856

    Article  Google Scholar 

  • Kobayashi I, Mukataka S, Nakajima M (2005b) Novel asymmetric through-hole array microfabricated on a silicon plate for formulating monodisperse emulsions. Langmuir 21:7629–7632

    Article  Google Scholar 

  • Kobayashi I, Uemura K, Nakajima M (2006) Controlled generation of monodisperse discoid droplets using microchannel arrays. Langmuir 22:10893–10897

    Article  Google Scholar 

  • Kobayashi I, Hirose S, Katoh T, Zhang Y, Uemura K, Nakajima M (2008a) High-aspect-ratio through-hole array microfabricated in a PMMA plate for monodisperse emulsion production. Microsyst Technol 14:1349–1357

    Article  Google Scholar 

  • Kobayashi I, Takayuki T, Maeda R, Wada Y, Uemura K, Nakajima M (2008b) Straight-through microchannel devices for generating monodisperse emulsion droplets several microns in size. Microfluid Nanofluid 4:167–177

    Article  Google Scholar 

  • Kobayashi I, Wada Y, Uemura K, Nakajima M (2008c) Generation of uniform drops via through-hole arrays micromachined in stainless-steel plates. Microfluid Nanofluid 5:677–687

    Google Scholar 

  • Kobayashi I, Wada Y, Uemura K, Nakajima M (2009a) Production of monodisperse water-in-oil emulsions consisting of highly uniform droplets using asymmetric straight-through microchannel arrays. Microfluid Nanofluid 7:107–119

    Article  Google Scholar 

  • Kobayashi I, Wada Y, Uemura K, Nakajima M (2009b) Effect of channel and operation parameters on emulsion production using oblong straight-through microchannels. Jp J Food Eng 10:69–75

    Google Scholar 

  • Kobayashi I, Wada Y, Uemura K, Nakajima M (2010) Microchannel emulsification for mass production of uniform fine droplets: integration of microchannel arrays on a chip. Microfluid Nanofluid 8:255–262

    Article  Google Scholar 

  • Kobayashi I, Vladisavljević GT, Uemura K, Nakajima M (2011) CFD analysis of microchannel emulsification: droplet generation process and size effect of asymmetric straight flow-through microchannels. Chem Eng Sci 66:5556–5565

    Article  Google Scholar 

  • Kobayashi I, Uemura K, Nakajima M (2012) Large microchannel emulsification system for producing monodisperse droplets on a liter scale, IMRET 12 February 20–22. Lyon, France

    Google Scholar 

  • Koltuniewicz AB, Field RW, Arnot TC (1995) Cross-flow and dead-end microfiltration of oily-water emulsion. Part I: experimental study and analysis of flux decline. J Membr Sci 102:193–207

    Article  Google Scholar 

  • Koris A, Piacentini E, Vatai G, Bekassy-Molnar E, Drioli E, Giorno L (2011) Investigation on the effects of a mechanical shear-stress modification method during cross-flow membrane emulsification. J Membr Sci 371:28–36

    Article  Google Scholar 

  • Kosvintsev SR, Gasparini G, Holdich RG, Cumming IW, Stillwell MT (2005) Liquid–liquid membrane dispersion in a stirred cell with and without controlled shear. Ing Eng Chem Res 44:9323–9330

    Article  Google Scholar 

  • Kosvintsev SR, Gasparini G, Holdich RG (2008) Membrane emulsification: droplet size and uniformity in the absence of surface shear. J Membr Sci 313:182–189

    Article  Google Scholar 

  • Kukizaki M (2009) Shirasu porous glass (SPG) membrane emulsification in the absence of shear flow at the membrane surface: Influence of surfactant type and concentration, viscosities of dispersed and continuous phases, and transmembrane pressure. J Membr Sci 327:234–243

    Article  Google Scholar 

  • Kukizaki M (2010) Large-scale production of alkali-resistant Shirasu porous glass (SPG) membranes: influence of ZrO2 addition on crystallization and phase separation in Na2O–CaO–Al2O3–B2O3–SiO2 glasses; and alkali durability and pore morphology of the membranes. J Membr Sci 360:426–435

    Article  Google Scholar 

  • Kukizaki M, Goto M (2006) Size control of nanobubbles generated from Shirasu-porous-glass (SPG) membranes. J Membr Sci 281:386–396

    Article  Google Scholar 

  • Kukizaki M, Goto M (2007a) Preparation and characterization of a new asymmetric type of Shirasu porous glass (SPG) membrane used for membrane emulsification. J Membr Sci 299:190–199

    Article  Google Scholar 

  • Kukizaki M, Goto M (2007b) Preparation and evaluation of uniformly sized solid lipid microcapsules using membrane emulsification. Colloid Surf A 293:87–94

    Article  Google Scholar 

  • Kukizaki M, Goto M (2007c) Spontaneous formation behavior of uniform-sized microbubbles from Shirasu porous glass (SPG) membranes in the absence of water-phase flow. Colloid Surf A 296:174–181

    Article  Google Scholar 

  • Kukizaki M, Nakashima T (2004) Acid leaching process in the preparation of porous glass membranes from phase-separated glass in the Na2O–CaO–MgO–Al2O3–B2O3–SiO2 system. Membrane 29:301–308

    Article  Google Scholar 

  • Kukizaki M, Wada T (2008) Effect of the membrane wettability on the size and size distribution of microbubbles formed from Shirasu-porous-glass (SPG) membranes. Colloid Surf A 317:146–154

    Article  Google Scholar 

  • Kumacheva E, Garstecki P (2011) Microfluidic synthesis of polymer particles with non-conventional shapes. In: Microfluidic reactors for polymer particles. Wiley, Chichester, pp 192–214

  • Kuroiwa T, Kiuchi H, Noda K, Kobayashi I, Nakajima M, Uemura K, Sato S, Mukataka S, Ichikawa S (2009) Controlled preparation of giant vesicles from uniform water droplets obtained by microchannel emulsification with bilayer-forming lipids as emulsifiers. Microfluid Nanofluid 6:811–821

    Article  Google Scholar 

  • Lambrich U, Vladisavljević GT (2004) Emulsification using microstructured systems. Chem Ing Technol 76:376–383

    Article  Google Scholar 

  • Lao KL, Wang JH, Lee GB (2009) A microfluidic platform for formation of double-emulsion droplets. Microfluid Nanofluid 7:709–719

    Article  Google Scholar 

  • Lee D, Weitz DA (2008) Double emulsion-templated nanoparticle colloidosomes with selective permeability. Adv Mater 20:3498–3503

    Article  Google Scholar 

  • Lee CH, Hsiung SK, Lee GB (2007) A tunable microflow focusing device utilizing controllable moving walls and its applications for formation of micro-droplets in liquids. J Micromech Microeng 17:1121–1129

    Article  Google Scholar 

  • Lee WS, Jambovane S, Kim D, Hong JW (2009) Predictive model on micro droplet generation through mechanical cutting. Microfluid Nanofluid 7:431–438

    Article  Google Scholar 

  • Lewis PC, Graham RR, Nie Z, Xu S, Seo M, Kumacheva E (2005) Continuous synthesis of copolymer particles in microfluidic reactors. Macromolecules 38:4536–4538

    Article  Google Scholar 

  • Li N, Sakaki K (2008) Performance of an emulsion enzyme membrane reactor combined with premix membrane emulsification for lipase-catalyzed resolution of enantiomers. J Membr Sci 314:183–192

    Article  Google Scholar 

  • Li W, Nie ZH, Zhang H, Paquet C, Seo M, Garstecki P, Kumacheva E (2007) Screening the effect of surface energy on microchannels on microfluidic emulsification. Langmuir 15:8010–8014

    Article  Google Scholar 

  • Li W, Young EWK, Seo M, Nie Z, Garstecki P, Simmons CA, Kumacheva E (2008) Simultaneous generation of droplets with different dimensions in parallel integrated microfluidic droplet generators. Soft Matter 4:258–262

    Article  Google Scholar 

  • Li SW, Xu JH, Wang YJ, Lu YC, Luo GS (2009) Low-temperature bonding of poly-(methyl methacrylate) microfluidic devices under an ultrasonic field. J Micromech Microeng 19:015035

    Article  Google Scholar 

  • Lin BC, Su YC (2008) On-demand liquid-in-liquid droplet metering and fusion utilizing pneumatically actuated membrane valves. J Micromech Microeng 18:115005

    Article  Google Scholar 

  • Link DR, Anna SL, Weitz DA, Stone HA (2004) Geometrically mediated breakup of drops in microfluidic devices. Phys Rev Lett 92 (Art. No. 054503)

  • Liu XQ, Nakajima M, Nabetani H, Xu QY, Ichikawa S, Sano Y (2001) Stability characteristics of dispersed oil droplets prepared by the microchannel emulsification method. J Colloid Interface Sci 233:23–30

    Article  Google Scholar 

  • Liu XD, Bao XD, Xue WM, Xiong W, Yu T, Yu XJ, Ma XJ, Yuan Q (2003) Preparation of uniform calcium alginate gel beads by membrane emulsification coupled with internal gelation. J Appl Polym Sci 87:848–852

    Article  Google Scholar 

  • Liu H, Nakajima M, Nishi T, Kimura T (2005) Effect of channel structure on preparation of a water-in-oil emulsion by polymer microchannels. Eur J Lipid Sci Technol 107:481–487

    Article  Google Scholar 

  • Liu L, Wang W, Ju XJ, Xie R, Chu LY (2010) Smart thermo-triggered squirting capsules for nanoparticle delivery. Soft Matter 6:3759–3763

    Article  Google Scholar 

  • Lorenceau E, Utada AS, Link DR, Cristobal G, Joanicot M, Weitz DA (2005) Generation of polymerosomes from double emulsions. Langmuir 21:9183–9186

    Article  Google Scholar 

  • Lub J, Nijssen WPM, Pikkemaat JA, Stapert HR (2006) Preparation of monodisperse polymer particles and capsules by ink-jet printing. Colloid Surf A 289:96–104

    Article  Google Scholar 

  • Luque A, Perdigones FA, Esteve J, Montserrat J, Gañán-Calvo AM, Quero JM (2007) Silicon microdevice for emulsion production using three-dimensional flow focusing. J Micromech Microeng 16:1201–1208

    Google Scholar 

  • Luque A, Perdigones FA, Esteve J, Montserrat J, Gañán-Calvo AM, Quero JM (2009) Reduction of droplet-size dispersion in parallel flow-focusing microdevices using a passive method. J Micromech Microeng 19:045029

    Article  Google Scholar 

  • Ma GH, Nagai M, Omi S (1999) Preparation of uniform poly(lactide) microspheres by employing the shirasu porous glass (SPG) emulsification technique. Colloid Surf A 153:383–394

    Article  Google Scholar 

  • Manga MS, Cayre OJ, Williams RA, Biggs S, York DW (2012) Production of solid-stabilised emulsions through rotational membrane emulsification: influence of particle adsorption kinetics. Soft Matter 8:1532–1538

    Article  Google Scholar 

  • Manz A, Harrison DJ, Verpoorte EDJ, Fettinger JC, Paulus A, Lüdi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems: capillary electrophoresis on a chip. J Chromatogr 593:253–258

    Article  Google Scholar 

  • Mazzei R, Drioli E, Giorno L (2010) Biocatalytic membrane reactor and membrane emulsification concepts combined in a single unit to assist production and separation of water unstable reaction products. J Membr Sci 352:166–172

    Article  Google Scholar 

  • McClain MA, Culbertson CT, Jacobson SC, Ramsey JM (2001) Flow cytometry of Escherichia coli on microfluidic devices. Anal Chem 73:5334–5338

    Article  Google Scholar 

  • Meng T, Xie R, Chen YC, Cheng CJ, Li PF, Ju XJ, Chu LY (2010) A thermo-responsive affinity membrane with nano-structured pores and grafted poly(N-isopropylacrylamide) surface layer for hydrophobic adsorption. J Membr Sci 349:258–267

    Article  Google Scholar 

  • Morimoto Y, Tan WH, Takeuchi S (2009) Three-dimensional axisymmetric flow-focusing device using stereolithography. Biomed Microdev 11:369–377

    Article  Google Scholar 

  • Morimoto Y, Kuribayashi-Shigetomi K, Takeuchi S (2011) A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets. J Micromech Microeng 21:054031

    Article  Google Scholar 

  • Nakagawa K, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) Microchannel emulsification using gelatin and surfactant-free coacervate microencapsulation. J Colloid Interface Sci 278:198–205

    Article  Google Scholar 

  • Nakashima T, Shimizu M (1986) Porous glass from calcium alumino boro-silicate glass. Ceram Jpn 21:408–412 (in Japanese)

    Google Scholar 

  • Nakashima T, Shimizu M, Kukizaki M (1991) Membrane emulsification by microporous glass. Key Eng Mater 61–62:513–516

    Google Scholar 

  • Nakashima T, Shimizu M, Kukizaki M (1993) Effect of surfactant on production of monodispersed O/W emulsion in membrane emulsification. Kag Kog Ronbunshu 19:991–997 (in Japanese)

    Article  Google Scholar 

  • Nazir A, Schroën K, Boom R (2010) Premix emulsification: a review. J Membr Sci 362:1–11

    Article  Google Scholar 

  • Nazir A, Schroën K, Boom R (2011) High-throughput premix membrane emulsification using nickel sieves having straight-through pores. J Membr Sci 383:116–123

    Article  Google Scholar 

  • Neves MA, Ribeiro HS, Fujiu KB, Kobayashi I, Nakajima M (2008) Formulation of controlled size PUFA-loaded oil-in-water emulsions by microchannel emulsification using β-carotene-rich palm oil. Ind Eng Chem Res 47:6405–6411

    Article  Google Scholar 

  • Nie Z, Xu S, Seo M, Lewis PC, Kumacheva E (2005) Polymer particles with various shapes and morphologies produced in continuous microfluidic reactors. J Am Chem Soc 127:8058–8063

    Article  Google Scholar 

  • Nisisako T, Torii T (2008) Microfluidic large-scale integration on a chip for mass production of monodisperse droplets and particles. Lab Chip 8:287–293

    Article  Google Scholar 

  • Nisisako T, Torii T, Higuchi T (2004) Novel microreactors for functional polymer beads. Chem Eng J 101:23–29

    Article  Google Scholar 

  • Nisisako T, Okushima S, Torii T (2005) Controlled formulation of monodisperse double emulsions in a multiple-phase microfluidic system. Soft Matter 1:23–27

    Article  Google Scholar 

  • Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicolored Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152–1156

    Article  Google Scholar 

  • Okushima S, Nisisako T, Torii T, Higuchi T (2004) Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20:9905–9908

    Article  Google Scholar 

  • Olson F, Hunt CA, Szoka FC (1979) Preparation of liposomes of defined size distribution by extrusion through polycarbonate membranes. Biochim Biophys Acta 557:9–23

    Article  Google Scholar 

  • Park SH, Yamaguchi T, Nakao S (2001) Transport mechanism of deformable droplets in microfiltration of emulsions. Chem Eng Sci 56:3539–3548

    Article  Google Scholar 

  • Rayleigh L (1879) On the instability of jets. Proc London Math Soc 10:4–13

    Article  MATH  Google Scholar 

  • Rayner M, Trägårdh G (2002) Membrane emulsification modelling: how can we get from characterisation to design? Desalination 145:165–172

    Article  Google Scholar 

  • Rayner M, Trägårdh G, Trägårdh C, Dejmek P (2004) Using the surface evolver to model droplet formation processes in membrane emulsification. J Colloid Interface Sci 279:175–185

    Article  Google Scholar 

  • Rayner M, Trägårdh G, Trägårdh C (2005) The impact of mass transfer and interfacial expansion rate on droplet size in membrane emulsification processes. Colloids Surf A 266:1–17

    Article  Google Scholar 

  • Saeki D, Sugiura S, Kanamori T, Sato S, Ichikawa S (2010a) Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer. Lab Chip 10:357–362

    Article  Google Scholar 

  • Saeki D, Sugiura S, Kanamori T, Sato S, Ichikawa S (2010b) Formation of monodisperse calcium alginate microbeads by rupture of water-in-oil-in-water droplets with an ultra-thin oil phase layer. Lab Chip 10:2292–2295

    Article  Google Scholar 

  • Sawalha H, Fan Y, Schroën K, Boom R (2008) Preparation of hollow polylactide microcapsules through premix membrane emulsification—effects of nonsolvent properties. J Membr Sci 325:665–671

    Article  Google Scholar 

  • Schadler V, Windhab EJ (2004) Kontinuierliches Membran-Emulgieren mittels rotierender Mikromembranen mit definierten Porenabständen. Chem Ing Tech 76:1392

    Article  Google Scholar 

  • Schadler V, Windhab EJ (2006) Continuous membrane emulsification by using a membrane system with controlled pore distance. Desalination 189:130–135

    Article  Google Scholar 

  • Schröder V, Behrend O, Schubert H (1998) Effect of dynamic interfacial tension on the emulsification process using microporous, ceramic membrane. J Colloid Interface Sci 202:334–340

    Article  Google Scholar 

  • Seo M, Paquet C, Nie Z, Xu S, Kumacheva E (2007) Microfluidic consecutive flow-focusing droplet generators. Soft Matter 3:986–992

    Article  Google Scholar 

  • Shah RK, Shum HC, Rowat AC, Lee D, Agresti JJ, Utada AS, Chu LY, Kim JW, Fernandez-Nieves A, Martinez CJ, Weitz DA (2008) Designer emulsions using microfluidics. Mater Today 11:18–27

    Article  Google Scholar 

  • Shepherd RF, Conrad JC, Rhodes SK, Link DR, Marquez M, Weitz DA, Lewis JA (2006) Microfluidic assembly of homogeneous and janus colloid-filled hydrogel granules. Langmuir 22:8618–8622

    Article  Google Scholar 

  • Shestopalov I, Tice JD, Ismagilov RF (2004) Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system. Lab Chip 4:316–321

    Article  Google Scholar 

  • Shimoda M, Miyamae H, Nishiyama K, Yuasa T, Noma S, Igura N (2011) Swirl-flow membrane emulsification for high throughput of dispersed phase flux through Shirasu porous glass (SPG) membrane. J Chem Eng J 44:1–6

    Article  Google Scholar 

  • Shui L, van den Berg A, Eijkel JCT (2009) Interfacial tension controlled W/O and O/W 2-phase flows in microchannel. Lab Chip 9:795–801

    Article  Google Scholar 

  • Shum HC, Lee D, Yoon I, Kodger T, Weitz DA (2008) Double emulsion templated monodisperse phospholipid vesicles. Langmuir 24:7651–7653

    Article  Google Scholar 

  • Shum HC, Bandyopadhyay A, Bose S, Weitz DA (2009) Double emulsion droplets as microreactors for synthesis of mesoporous hydroxyapatite. Chem Mater 21:5548–5555

    Article  Google Scholar 

  • Shum HC, Abate AR, Lee D, Studart AR, Wang B, Chen CH, Thiele J, Shah RK, Krummel A, Weitz DA (2010) Droplet microfluidics for fabrication of non-spherical particles. Macromol Rapid Commun 31:108–118

    Google Scholar 

  • Shum HC, Zhao Y, Kim SH, Weitz DA (2011) Multicompartment polymersomes from double emulsions. Angew Chem Int 50:1648–1651

    Article  Google Scholar 

  • Song H, Chen DL, Ismagilov RF (2006) Reactions in droplets in microfluidic channels. Angew Chem Int Ed 45:7336–7356

    Article  Google Scholar 

  • Steegmans MLJ, Schroën KGPH, Boom RM (2009) Characterization of emulsification at flat microchannel Y junctions. Langmuir 25:3396–3401

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Tong J, Nabetani H, Seki M (2000) Preparation of monodispersed solid lipid microspheres using a microchannel emulsification technique. J Colloid Interface Sci 227:95–103

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Itou H, Seki M (2001) Synthesis of polymeric microspheres with narrow size distributions employing microchannel emulsification. Macromol Rapid Commun 22:773–778

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Seki M (2002a) Effect of channel structure on microchannel emulsification. Langmuir 18:5708–5712

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Kumazawa N, Iwamoto S, Seki M (2002b) Characterization of spontaneous transformation-based droplet formation during microchannel emulsification. J Phys Chem B 106:9405–9409

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Seki M (2002c) Prediction of droplet diameter for microchannel emulsification. Langmuir 18:3854–3859

    Article  Google Scholar 

  • Sugiura S, Nakajima M, Seki M (2002d) Preparation of monodispersed polymeric microspheres over 50 μm employing microchannel emulsification. Ind Eng Chem Res 41:4043–4047

    Article  Google Scholar 

  • Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiali A, Ohkohchi N, Nakajima M (2005) Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26:3327–3331

    Article  Google Scholar 

  • Sun BJ, Shum HC, Holtze C, Weitz DA (2010) Microfluidic melt emulsification for encapsulation and release of actives. ACS Appl Mater Interfaces 2:3411–3416

    Article  Google Scholar 

  • Surh J, Jeong YG, Vladisavljević GT (2008) On the preparation of lecithin-stabilized oil-in-water emulsions by multi-stage premix membrane emulsification. J Food Eng 89:164–170

    Article  Google Scholar 

  • Suzuki K, Shuto I, Hagura Y (1996) Characteristics of the membrane emulsification method combined with preliminary emulsification for preparing corn oil-in-water emulsions. Food Sci Technol Int Tokyo 2:43–47

    Article  Google Scholar 

  • Suzuki K, Fujiki I, Hagura Y (1999) Preparation of high concentration of O/W and W/O emulsions by the membrane phase inversion emulsification using PTFE membranes. Food Sci Technol Int Tokyo 5:234–238

    Google Scholar 

  • Takeuchi S, Garstecki P, Weibel DB, Whitesides GM (2005) An axisymmetric flow-focusing microfluidic device. Adv Mater 2005:1067–1072

    Article  Google Scholar 

  • Tan YC, Fisher JS, Lee AI, Cristini V, Lee AP (2004) Design of microfluidic channel geometries for the control of droplet volume, chemical concentration, and sorting. Lab Chip 4:292–298

    Article  Google Scholar 

  • Tan YC, Cristini V, Lee AP (2006) Monodispersed microfluidic droplet generation by shear focusing microfluidic device. Sens Actuator B Chem 114:350–356

    Article  Google Scholar 

  • Tan J, Xu JH, Li SW, Luo GS (2008) Drop dispenser in a cross-junction microfluidic device: scaling and mechanism of break-up. Chem Eng J 136:306–311

    Article  Google Scholar 

  • Teh SY, Lin R, Hung LH, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  Google Scholar 

  • Thompson KL, Armes SP, York DW (2011) Preparation of pickering emulsions and colloidosomes with relatively narrow size distributions by stirred cell membrane emulsification. Langmuir 27:2357–2363

    Article  Google Scholar 

  • Thorsen T, Roberts RW, Arnold FH, Quake SR (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86:4163–4166

    Article  Google Scholar 

  • Tice JD, Lyon AD, Ismagilov RF (2004) Effects of viscosity on droplet formation and mixing in microfluidic channels. Anal Chim Acta 507:73–77

    Article  Google Scholar 

  • Timgren A, Trägårdh G, Trägårdh C (2010) A model for drop size prediction during cross-flow emulsification. Chem Eng Res Des 88:229–238

    Article  Google Scholar 

  • Tong J, Nakajima M, Nabetani H, Kikuchi Y, Maruta Y (2001) Production of oil-in-water microspheres using a stainless steel microchannel. J Colloid Interface Sci 237:239–248

    Article  Google Scholar 

  • Umbanhowar PB, Prasad V, Weitz DA (2000) Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16:347–351

    Article  Google Scholar 

  • Utada AS, Lorenceau E, Link DR, Kaplan PD, Stone HA, Weitz DA (2005) Monodisperse double emulsions generated from a microcapillary device. Science 308:537–541

    Article  Google Scholar 

  • Utada AS, Chu L-Y, Fernandez-Nieves A, Link DR, Holtze C, Weitz DA (2007) Dripping, jetting, drops, and wetting: the magic of microfluidics. MRS Bull 32:702–708

    Article  Google Scholar 

  • Utada AS, Fernandez-Nieves A, Gordillo JM, Weitz DA (2008) Absolute instability of a liquid jet in a coflowing stream. Phys Rev Lett 100 (Art. No. 014502)

  • van der Graaf S, Schroën CGPH, Van der Sman RGM, Boom RM (2004) Influence of dynamic interfacial tension on droplet formation during membrane emulsification. J Colloid Interface Sci 277:456–463

    Article  Google Scholar 

  • van der Graaf S, Steegmans MLJ, Van der Sman RGM, Schroën CGPH, Boom RM (2005) Droplet formation in a T-shaped microchannel junction: a model system for membrane emulsification. Colloid Surf A 266:106–116

    Article  Google Scholar 

  • van Dijke KC, Veldhuis G, Schroën K, Boom R (2009a) Simultaneous formation of many droplets in a single microfluidic droplet formation unit. AIChE J 56:833–836

    Google Scholar 

  • van Dijke K, Veldhuis G, Schroën K, Boom R (2009b) Parallelized edge-based droplet generation (EDGE) devices. Lab Chip 9:2824–2830

    Article  Google Scholar 

  • van Dijke K, de Ruiter R, Schroën K, Boom R (2010a) The mechanism of droplet formation in microfluidic EDGE systems. Soft Matter 6:321–330

    Article  Google Scholar 

  • van Dijke K, Schroën K, van der Padt A, Boom R (2010b) EDGE emulsification for food-grade dispersions. J Food Eng 97:348–354

    Article  Google Scholar 

  • van Dijke K, Kobayashi I, Schroën K, Uemura K, Nakajima M, Boom R (2010c) Effect of viscosities of dispersed and continuous phases in microchannel oil-in-water emulsification. Microfluid Nanofluid 9:77–85

    Article  Google Scholar 

  • van Rijn C, van der Wekken M, Nijdam W, Elwenspoek M (1997) Deflection and maximum load of microfiltration membrane sieves made with silicon micromachining. J Microelectromech Syst 6:48–54

    Article  Google Scholar 

  • Vladisavljević GT, McClements DJ (2010) Modification of interfacial characteristics of monodisperse droplets produced using membrane emulsification by surfactant displacement and/or polyelectrolyte electrostatic deposition. Colloid Surf A 364:123–131

    Article  Google Scholar 

  • Vladisavljević GT, Schubert H (2002) Preparation and analysis of oil-in-water emulsions with a narrow droplet size distribution using Shirasu-porous-glass (SPG) membranes. Desalination 144:167–172

    Article  Google Scholar 

  • Vladisavljević GT, Schubert H (2003a) Preparation of emulsions with a narrow particle size distribution using microporous α-alumina membranes. J Dispers Sci Technol 24:811–819

    Article  Google Scholar 

  • Vladisavljević GT, Schubert H (2003b) Influence of process parameters on droplet size distribution in SPG membrane emulsification and stability of prepared emulsion droplets. J Membr Sci 225:15–23

    Article  Google Scholar 

  • Vladisavljević GT, Williams RA (2005) Recent developments in manufacturing emulsions and particulate products using membranes. Adv Colloid Interface Sci 113:1–20

    Article  Google Scholar 

  • Vladisavljević GT, Williams RA (2006) Manufacture of large uniform droplets using rotating membrane emulsification. J Colloid Interface Sci 299:396–402

    Article  Google Scholar 

  • Vladisavljević GT, Tesch S, Schubert H (2002) Preparation of water-in-oil emulsions using microporous polypropylene hollow fibers: influence of some operating parameters on droplet size distribution. Chem Eng Process 41:231–238

    Article  Google Scholar 

  • Vladisavljević GT, Lambrich U, Nakajima M, Schubert H (2004a) Production of O/W emulsions using SPG membranes, ceramic α-Al2O3 membranes, microfluidizer and a microchannel plate: a comparative study. Colloid Surf A 232:199–207

    Article  Google Scholar 

  • Vladisavljević GT, Shimizu M, Nakashima T (2004b) Preparation of monodisperse multiple emulsions at high production rates by multi-stage premix membrane emulsification. J Membr Sci 244:97–106

    Article  Google Scholar 

  • Vladisavljević GT, Shimizu M, Nakashima T (2005) Permeability of hydrophilic and hydrophobic Shirasu-porous-glass (SPG) membranes to pure liquids and its microstructure. J Membr Sci 250:69–77

    Article  Google Scholar 

  • Vladisavljević GT, Shimizu M, Nakashima T (2006a) Production of multiple emulsions for drug delivery systems by repeated SPG membrane homogenization: influence of mean pore size, interfacial tension and continuous phase viscosity. J Membr Sci 284:373–383

    Article  Google Scholar 

  • Vladisavljević GT, Surh J, McClements DJ (2006b) Effect of emulsifier type on droplet disruption in repeated Shirasu porous glass membrane homogenization. Langmuir 22:4526–4533

    Article  Google Scholar 

  • Vladisavljević GT, Kobayashi I, Nakajima M, Williams RA, Shimizu M, Nakashima T (2007) Shirasu porous glass membrane: characterisation of microstructure by high resolution X-ray microtomography and visualisation of droplet formation in real time. J Membr Sci 302:243–253

    Article  Google Scholar 

  • Vladisavljević GT, Kobayashi I, Nakajima M (2008) Generation of highly uniform droplets using asymmetric microchannels fabricated on a single crystal silicon plate: effect of emulsifier and oil types. Powder Technol 183:37–45

    Article  Google Scholar 

  • Vladisavljević GT, Kobayashi I, Nakajima M (2011a) Effect of dispersed phase viscosity on maximum droplet generation frequency in microchannel emulsification using asymmetric straight-through channels. Microfluid Nanofluid 10:1199–1209

    Article  Google Scholar 

  • Vladisavljević GT, Duncanson WJ, Shum HC, Weitz AD (2011b) Fabrication of biodegradable poly(lactic acid) particles in flow focusing glass capillary devices. In: UK Colloids 2011, London

  • Vladisavljević GT, Shum HC, Weitz AD (2011c) Control over the shell thickness of core/shell drops in three-phase glass capillary devices. In: UK Colloids 2011, London

  • Wagdare NA, Marcelis ATM, Ho OB, Boom RM, van Rijn CJM (2010) High throughput vegetable oil-in-water emulsification with a high porosity micro-engineered membrane. J Membr Sci 347:1–7

    Article  Google Scholar 

  • Wagdare NA, Marcelis ATM, Boom RM, van Rijn CJM (2011) Porous microcapsule formation with microsieve emulsification. J Colloid Interface Sci 355:453–457

    Article  Google Scholar 

  • Wang B, Shum HC, Weitz DA (2009a) Fabrication of monodisperse toroidal particles by polymer solidification in microfluidics. Chem Phys Chem 10:641–645

    Article  Google Scholar 

  • Wang K, Lu YC, Xu JH, Tan J, Luo GS (2009b) Liquid–liquid micro-dispersion in a double-pore T-shaped microfluidic device. Microfluid Nanofluid 6:557–564

    Article  Google Scholar 

  • Wang Y, Zhang C, Bi S, Luo G (2010) Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor. Powder Technol 202:130–136

    Article  Google Scholar 

  • Wang K, Lu YC, Xu JH, Tan J, Luo GS (2011a) Generation of micromonodispersed droplets and bubbles in the capillary embedded T-junction microfluidic devices. AIChE J 57:299–306

    Article  Google Scholar 

  • Wang W, Xie R, Ju XJ, Luo T, Liu L, Weitz DA, Chu LY (2011b) Controllable microfluidic production of multicomponent multiple emulsions. Lab Chip 11:1587–1592

    Article  Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Article  Google Scholar 

  • Williams RA (2001) Controlled dispersion using a spinning membrane reactor. UK Patent Application No. PCT/GB00/04917

  • Williams RA, Peng SJ, Wheeler DA, Morley NC, Taylor D, Whalley M, Houldsworth DW (1998) Controlled production of emulsions using a crossflow membrane. Chem Eng Res Des 76 A:902–910

    Google Scholar 

  • Wilson ME, Kota N, Kim YT, Wang Y, Stolz DB, LeDuc PR, Ozdoganlar OB (2011) Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Lab Chip 11:1550–1555

    Article  Google Scholar 

  • Wu HW, Lin CC, Lee GB (2011) Stem cells in microfluidics. Biomicrofluidics 5:013401

    Article  Google Scholar 

  • Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184

    Article  Google Scholar 

  • Xu Q, Nakajima M (2004) The generation of highly monodisperse droplets through the breakup of hydrodynamically focused microthread in a microfluidic device. Appl Phys Lett 85:3726–3728

    Article  Google Scholar 

  • Xu JH, Luo GS, Chen GG, Wang JD (2005a) Experimental and theoretical approaches on droplet formation from a micrometer screen hole. J Membr Sci 266:121–131

    Article  Google Scholar 

  • Xu JH, Luo GS, Chen GG, Tan B (2005b) Mass transfer performance and two-phase flow characteristic in membrane dispersion mini-extractor. J Membr Sci 249:75–81

    Article  Google Scholar 

  • Xu Q, Nakajima M, Binks BP (2005c) Preparation of particle-stabilized oil-in-water emulsions with the microchannel emulsification method. Colloids Surf A 262:94–100

    Article  Google Scholar 

  • Xu JH, Li SW, Tan J, Wang YJ, Luo GS (2006a) Preparation of highly monodisperse droplet in a T-junction microfluidic device. AIChE J 52:3005–3010

    Article  Google Scholar 

  • Xu JH, Luo GS, Li SW, Chen GG (2006b) Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties. Lab Chip 6:131–136

    Article  Google Scholar 

  • Xu JH, Li SW, Tan J, Wang YJ, Luo GS (2006c) Controllable preparation of monodisperse O/W and W/O emulsions in the same microfluidic device. Langmuir 22:7943–7946

    Article  Google Scholar 

  • Xu JH, Li SW, Tan J, Luo GS (2008) Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping. Microfluid Nanofluid 5:711–717

    Article  Google Scholar 

  • Yafei W, Tao Z, Gang H (2006) Structural evolution of polymer-stabilized double emulsions. Langmuir 67:67–73

    Article  Google Scholar 

  • Yamamoto T, Ohmori T, Kim YH (2010) Synthesis of monodisperse carbon cryogel microspheres using membrane emulsification of a phenol–formaldehyde solution. Carbon 48:912–928

    Article  Google Scholar 

  • Yamanishi Y, Kihara Y, Sakuma S, Arai F (2009) On-demand production of emulsion droplets using magnetically driven microtool. Int J Autom Technol 3:502–508

    Google Scholar 

  • Yanagishita T, Tomabechi Y, Nishio K, Masuda H (2004) Preparation of monodisperse SiO2 nanoparticles by membrane emulsification using ideally ordered anodic porous alumina. Langmuir 20:554–555

    Article  Google Scholar 

  • Yasuda M, Goda T, Ogino H, Glomm WR, Takayanagi H (2010) Preparation of uniform monomer droplets using packed column and continuous polymerization in tube reactor. J Colloid Interface Sci 349:392–410

    Article  Google Scholar 

  • Yasuno M, Sugiura S, Iwamoto S, Nakajima M, Shono A, Satoh K (2004) Monodispersed microbubble formation using microchannel technique. AIChE J 50:3227–3233

    Article  Google Scholar 

  • Ye C, Chen A, Colombo P, Martinez C (2010) Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer. J R Soc Interface 7:S461–S473

    Article  Google Scholar 

  • Yeh CH, Lin PW, Lin YC (2010) Chitosan microfiber fabrication using a microfluidic chip and its application to cell cultures. Microfluid Nanofluid 8:115–121

    Article  Google Scholar 

  • Yeh CH, Chen YC, Lin YC (2011) Generation of droplets with different concentrations using gradient-microfluidic droplet generator. Microfluid Nanofluid 11:245–253

    Article  Google Scholar 

  • Yi GR, Thorsen T, Manoharan VN, Hwang MJ, Jeon SJ, Pine DJ, Quake SR, Yang SM (2003) Generation of uniform colloidal assemblies in soft microfluidic devices. Adv Mater 15:1300–1304

    Article  Google Scholar 

  • Yobas L, Martens S, Ong WL, Ranganathan N (2006) High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets. Lab Chip 6:1073–1079

    Article  Google Scholar 

  • You JO, Park SB, Park HY, Haam S, Chung CH, Kim WS (2001) Preparation of regular sized Ca-alginate microspheres using membrane emulsification method. J Microencapsul 18:521–532

    Article  Google Scholar 

  • Yuan Q, Williams RA, Aryanti N (2010) Innovations in high throughput manufacturing of uniform emulsions and capsules. Adv Powder Technol 21:599–608

    Article  Google Scholar 

  • Zhao CX, Middelberg APJ (2011) Two-phase microfluidic flows. Chem Eng Sci 66:1394–1411

    Article  Google Scholar 

  • Zhao Y, Shum HC, Chen H, Adams LLA, Gu Z, Weitz DA (2011) Microfluidic generation of multifunctional quantum dot barcode particles. J Am Chem Soc 133:8790–8793

    Article  Google Scholar 

  • Zheng B, Ismagilov RF (2005) A microfluidic approach for screening submicroliter volumes against multiple reagents by using preformed arrays of nanoliter plugs in a three-phase liquid/liquid/gas flow. Angew Chem Int Ed 44:2520–2523

    Article  Google Scholar 

  • Zheng B, Tice JD, Ismagilov RF (2004) Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Anal Chem 76:4977–4982

    Article  Google Scholar 

  • Zhou C, Yue P, Feng JJ (2006) Formation of simple and compound drops in microfluidic devices. Phys Fluids 18(092105):1–14

    Google Scholar 

  • Zhu J, Barrow D (2005) Analysis of droplet size during crossflow membrane emulsification using stationary and vibrating micromachined silicon nitride membranes. J Membr Sci 261:136–144

    Article  Google Scholar 

  • Zissi S, Bertsch A, Jezequel JY, Corbel S, Lougnot DJ, Andre JC (1996) Stereolithography and microtechniques. Microsyst Technol 2:97–102

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isao Kobayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vladisavljević, G.T., Kobayashi, I. & Nakajima, M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices. Microfluid Nanofluid 13, 151–178 (2012). https://doi.org/10.1007/s10404-012-0948-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-012-0948-0

Keywords

Navigation