Skip to main content

Advertisement

Log in

Single-cell microfluidic impedance cytometry: a review

  • Review
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

Lab-on-chip technologies are being developed for multiplexed single cell assays. Impedance offers a simple non-invasive method for counting, identifying and monitoring cellular function. A number of different microfluidic devices for single cell impedance have been developed. These have potential applications ranging from simple cell counting and label-free identification of different cell types or detecting changes in cell morphology after invasion by parasites. Devices have also been developed that trap single cells and continuously record impedance data. This technology has applications in basic research, diagnostics, or non-invasively probing cell function at the single-cell level. This review will describe the underlying principles of impedance analysis of particles. It then describes the state-of-the-art in the field of microfluidic impedance flow cytometry. Finally, future directions and challenges are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Archer S, Morgan H, Rixon FJ (1999) Electrorotation studies of baby hamster kidney fibroblasts infected with herpes simplex virus type 1. Biophys J 76:2833–2842

    Google Scholar 

  • Arnold WM, Zimmermann U (1988) Electro-rotation: development of a technique for dielectric measurements on individual cells and particles. J Electrostat 21:151–191

    Google Scholar 

  • Asami K (2002) Characterization of heterogeneous systems by dielectric spectroscopy. Prog Polym Sci 27:1617–1659

    Google Scholar 

  • Asami K (2006) Dielectric dispersion in biological cells of complex geometry simulated by the three-dimensional finite difference method. J Phys D Appl Phys 39:492–499

    Google Scholar 

  • Ayliffe HE, Frazier AB, Rabbit RD (1999) Electric impedance spectroscopy using microchannels with integrated metal electrodes. J Microelectromech Syst 8:50–57

    Google Scholar 

  • Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  • Bayley H, Martin CR (2000) Resistive-pulse sensing—from microbes to molecules. Chem Rev 100:2575–2594

    Google Scholar 

  • Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    Google Scholar 

  • Benazzi G, Holmes D, Sun T, Mowlem M, Morgan H (2007) Discrimination and analysis of phytoplankton using a microfluidic cytometer. IET Nanobiotechnol 1:94–101

    Google Scholar 

  • Bernabini C, Holmes D, Morgan H (2010) Detection and discrimination of bacteria and micro-particles by micro-impedance spectroscopy. Lab Chip (submitted)

  • Branton D et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Google Scholar 

  • Brown RB, Audet J (2008) Current techniques for single cell analysis. J R Soc Interface 5:S131–S138

    Google Scholar 

  • Bruggeman DAG (1935) Berechnug vershiedener physikalischen Konstanten von heterogenen substanzen. Ann Phys (Leipzig) 24:634–636

    Google Scholar 

  • Carlo DD, Wu LY, Lee LP (2006a) Dynamic single cell culture array. Lab Chip 6:1445–1449

    Google Scholar 

  • Carlo DD, Wu LY, Lee LP (2006b) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78:4925–4930

    Google Scholar 

  • Chao TC, Ros A (2008) Microfluidic single-cell analysis of intracellular compounds. J R Soc Interface 5:S139–S150

    Google Scholar 

  • Cheng X, Liu Y, Irimia D, Demirci U, Yang L, Zamir L, Toner M, Rodríguez, Bashir R (2007) Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices. Lab Chip 7:746–755

    Google Scholar 

  • Cheung K, Gawad S, Renaud Ph (2005) Impedance spectroscopy flow cytometry: on-chip label-free cell differentiation. Cytometry A 65A:124–132

    Google Scholar 

  • Cho YH, Yamamoto T, Sakai Y, Fujii T, Kim B (2006) Development of microfluidic device for electrical/physical characterization of single cell. J Microelectromech Syst 15:287–295

    Google Scholar 

  • Chun H, Chung TD, Kim HC (2005) Cytometry and velocimetry on a microfluidic chip using poly electrolytic salt bridges. Anal Chem 77:2490–2495

    Google Scholar 

  • Cole KS (1928a) Electric impedance of suspensions of spheres. J Gen Physiol 12:29–36

    Google Scholar 

  • Cole KS (1928b) Electric impedance of suspensions of Arbacia eggs. J Gen Physiol 12:37–54

    Google Scholar 

  • Cole KS (1932) Electric phase angle of cell membranes. J Gen Physiol 15:641–649

    Google Scholar 

  • Cole KS (1935) Electric impedance of Hipponoë eggs. J Gen Physiol 18:877–887

    Google Scholar 

  • Cole KS, Cole RH (1936a) Electric impedance of Asteria eggs. J Gen Physiol 19:609–623

    Google Scholar 

  • Cole KS, Cole RH (1936b) Electric impedance of Arbacia eggs. J Gen Physiol 19:625–632

    Google Scholar 

  • Coulter WH (1956) High speed automatic blood cell counter and cell analyzer. Proc Natl Electron Conf 12:1034–1040

    Google Scholar 

  • Curtis HJ, Cole KS (1937) Transverse electric impedance of Nitella. J Gen Physiol 21:189–201

    Google Scholar 

  • Davey HM, Kell DB (1996) Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol Rev 60:641–696

    Google Scholar 

  • Deblois RW, Bean CP (1970) Counting and sizing of submicron particles by the resistive pulse technique. Rev Sci Instrum 41:909–916

    Google Scholar 

  • Ferrier GA, Romanuik SF, Thomson DJ, Bridges GE, Freeman MR (2009) A microwave interferometric system for simultaneous actuation and detection of single biological cells. Lab Chip 9:3406–3412

    Google Scholar 

  • Foster KR (2002) Herman P. Schwan: a scientist and pioneer in biomedical engineering. Annu Rev Biomed Eng 4:1–27

    Google Scholar 

  • Foster KR, Schwan HP (1989) Dielectric properties of tissues and biological materials: a critical review. Crit Rev Biomed Eng 17:25–104

    Google Scholar 

  • Fricke H (1924a) A mathematical treatment of the electrical conductivity of colloids and cell suspensions. J Gen Physiol 6:375–384

    Google Scholar 

  • Fricke H (1924b) A mathematical treatment of the electric conductivity and capacity of disperse systems. I. The electric conductivity of a suspension of homogeneous spheroids. Phys Rev 24:575–587

    Google Scholar 

  • Fricke H (1925a) A mathematical treatment of the electric conductivity and capacity of disperse systems. II. The capacity of a suspension of conducting membrane for a current of low frequency. Phys Rev 26:678–681

    Google Scholar 

  • Fricke H (1925b) The electric capacity of suspensions of a red corpuscles of a dog. Phys Rev 26:682–687

    Google Scholar 

  • Fricke H (1925c) The electric capacity of suspensions with special reference to blood. J Gen Physiol 9:137–152

    Google Scholar 

  • Fricke H (1925d) The electric resistance and capacity of blood for frequencies between 800 and 4.5 million cycles. J Gen Physiol 9:153–167

    Google Scholar 

  • Fuller CK, Hamilton J, Ackler H, Krulevitch P, Boser B, Eldredge A, Becker F, Yang J, Gascoyne P (2000) Microfabricated multi-frequency particle impedance characterization system. In: Proceedings of the μTAS symposium, Enschede, The Netherlands, May 2000, pp 265–268

  • Gawad S, Schild L, Renaud Ph (2001) Micromachined impedance spectroscopy flow cytometer for cell analysis and particle sizing. Lab Chip 1:76–82

    Google Scholar 

  • Gawad S, Cheung K, Seger U, Bertsch A, Renaud Ph (2004) Dielectric spectroscopy in a micromachined flow cytometer: theoretical and practical considerations. Lab Chip 4:241–251

    Google Scholar 

  • Gawad S, Sun T, Green NG, Morgan H (2007) Impedance spectroscopy using maximum length sequences: application to single cell analysis. Rev Sci Instrum 78:054301

    Google Scholar 

  • Hanai T (1960) Theory of the dielectric dispersion due to the interfacial polarization and its application to emulsion. Kolloid Z 171:23–31

    Google Scholar 

  • Hanai T, Koizumi N (1976) Numerical estimation on a theory of interfacial polarization developed for disperse systems in higher concentration. Bull Inst Chem Res Kyoto Univ 54:248–254

    Google Scholar 

  • Hanai T, Koizumi N, Irimajiri A (1975) A method for determining the dielectric constant and the conductivity of membrane-bounded particles of biological relevance, Biophys. Struct Mech 1:285–294

    Google Scholar 

  • Hanai T, Asami K, Koizumi N (1979) Dielectric theory of concentrated suspensions of shell-spheres in particular reference to the analysis of biological cell suspensions. Bull Inst Chem Res Kyoto Univ 57:297–305

    Google Scholar 

  • Höber R (1910) Eine Methode die elektrische Leitfaehigkeit im Innern von Zellenzu messen. Arch Ges Physiol 133:237–259

    Google Scholar 

  • Höber R (1912) Ein zweites Verfahren die Leitfaehigkeit im Innern von Zellen ze messem. Arch Ges Physiol 148:189–221

    Google Scholar 

  • Höber R (1913) Messungen der inneren Leitfaehigkeit von Zelen III. Arch Ges Physiol 150:15–45

    Google Scholar 

  • Hoffman RA, Britt WB (1979) Flow-system measurement of cell impedance properties. J Histochem Cytochem 27:234–240

    Google Scholar 

  • Hoffman RA, Johnson TS, Britt WB (1981) Flow cytometric electronic direct current volume and radiofrequency impedance measurements of single cells and particles. Cytometry 1:377–384

    Google Scholar 

  • Holmes D, Morgan H (2010) Single cell impedance cytometry for identification and counting of CD4 T-cells in human blood using impedance labels. Anal Chem 82:1455–1461

    Google Scholar 

  • Holmes D, Pettigrew D, Reccius CH, Gwyer JD, Berkel CV, Holloway J, Davie DE, Morgan H (2009) Leukocyte analysis and differentiation using high speed microfluidic single cell impedance cytometry. Lab Chip 9:2881–2889

    Google Scholar 

  • Hua SZ, Pennell (2009) A microfluidic chip for real-time studies of the volume of single cells. Lab Chip 9:251–256

    Google Scholar 

  • Huang Y, Wang XB, Tame JA, Pethig R (1993) Electrokinetic behaviour of colloidal particles in travelling electric-fields: studies using yeast cells. J Phys D Appl Phys 26:1528–1535

    Google Scholar 

  • Huang Y, Wang XB, Gascoyne PRC, Becker FF (1999) Membrane dielectric responses of human T-lymphocytes following mitogenic stimulation. Biochimica Biophys Acta 1417:51–62

    Google Scholar 

  • Iliescu C, Poenar DP, Carp M, Loe FC (2007) A microfluidic device for impedance spectroscopy analysis of biological samples. Sens Actuators B 123:168–176

    Google Scholar 

  • Jagtiani AV, Zhe J, Hu J, Carletta J (2006a) Detection and counting of micro-scale particles and pollen using a multi-aperture Coulter counter. Meas Sci Technol 17:1706–1714

    Google Scholar 

  • Jagtiani AV, Sawant R, Zhe J (2006b) A label-free high throughput resistive-pulse sensor for simultaneous differentiation and measurement of multiple particle-laden analytes. J Micromech Microeng 16:1530–1539

    Google Scholar 

  • Jang LS, Wang MH (2007) Microfluidic device for cell capture and impedance measurement. Biomed Microdevices 9:737–743

    Google Scholar 

  • Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Kampmann GS, Huwiler A, Hebeisen M, Hessler T, Berardino MD (2008) On-chip non-invasive and label-free cell discrimination by impedance spectroscopy. Cell Prolif 41:830–840

    Google Scholar 

  • Kim KB, Chun H, Kim HC, Chung TD (2009) Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes. Electrophoresis 30:1464–1469

    Google Scholar 

  • Koch M, Evans AGR, Brunnschweller A (1999) Design and fabrication of a micromachined Coulter counter. J Micromech Microeng 9:159–161

    Google Scholar 

  • Küttel C, Nascimento E, Demierre N, Silva T, Braschler T, Renaud Ph, Oliva AG (2007) Label-free detection of Babesia bovis infected red blood cells using impedance spectroscopy on a microfabricated flow cytometer. Acta Trop 102:63–68

    Google Scholar 

  • Larsen U, Blankenstein G, Branebjerg J (1997), Microchip Coulter particle counter. In: Technical digest of the international conference on solid-state sensors and actuators, Chicago, IL, pp 1319–1322

  • Linderholm P, Renaud Ph (2005) Comment on ‘AC frequency characteristics of coplanar impedance sensors as design parameters’. Lab Chip 5:270–279

    Google Scholar 

  • Linderholm P, Seger U, Renaud Ph (2006) Analytical expression for electric field between two facing strip electrodes in microchannel. Electron Lett IEE 42:145–147

    Google Scholar 

  • Lu H, Schmidt MA, Jensen KF (2005) A microfluidic electroporation device for cell lysis. Lab Chip 5:23–29

    Google Scholar 

  • Malleo D, Nevill JT, Lee LP, Morgan H (2009) Continuous differential impedance spectroscopy of single cells. Microfluid Nanofluid. doi:10.1007/s10404-009-0534-2

  • Manz A, Harrison DJ, Verpoorte EMJ, Fettinger JC, Paulus A, Lüdi H, Widmer HM (1992) Planar chips technology for miniaturization and integration of separation techniques into monitoring systems-capillary electrophoresis on a chip. J Chromatog 593:253–258

    Google Scholar 

  • Maxwell JC (1873) A treatise on electricity and magnetism. Clarendon Press, Oxford

    Google Scholar 

  • Mishra NN, Retterer S, Zieziulewicz TJ et al (2005) On-chip micro-biosensor for the detection of human CD4(+) cells based on AC impedance and optical analysis. Biosens Bioelectron 21:696–704

    Google Scholar 

  • Morgan H, Green NG (2003) AC electrokinetics: colloids and nanoparticles. Research Studies Press, Ltd., Baldock

    Google Scholar 

  • Morgan H, Green NG, Hughes MP, Monaghan W, Tan TC (1997) Large area travelling-wave dielectrophoresis particle separator. J Micromech Microeng 7:65–70

    Google Scholar 

  • Morgan H, Holmes D, Green NG (2006) High speed simultaneous single particle impedance and fluorescence analysis on a chip. Curr Appl Phys 6:367–370

    Google Scholar 

  • Morgan H, Sun T, Holmes D, Gawad S, Green NG (2007) Single cell dielectric spectroscopy. J Phys D Appl Phys 40:61–70

    Google Scholar 

  • Murali S, Jagtiani AV, Xia X, Carletta J, Zhe J (2009) A microfluidic Coulter counting device for metal wear detection in lubrication oil. Rev Sci Instrum 80:016105

    Google Scholar 

  • Nieuwenhuis JH, Kohl F, Bastemeijer J, Sarro PM, Vellekoop MJ (2004) Integrated Coulter counter based on 2-dimensional liquid aperture control. Sens Actuators B 102:44–50

    Google Scholar 

  • Pauly H, Schwan HP (1959) Uber die Impedanz einer Suspension von kugelformigen Teilchen mit einer Schale. Z Naturf B 14:125–131

    Google Scholar 

  • Pethig R (1979) Dielectric and electronic properties of biological materials. Wiley, Chichester, UK

    Google Scholar 

  • Pohl HA (1978) Dielectrophoresis. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Ratanachoo K, Gascoyne PRC, Ruchirawat M (2002) Detection of cellular response to toxicants by dielectrophoresis. Biochimica Biophysica Acta 1564:449–458

    Google Scholar 

  • Rodriguez-Trujillo R, Mills CA, Samitier J, Gomila G (2007) Low cost micro-Coulter counter with hydrodynamic focusing. Microfluid Nanofluid 3:171–176

    Google Scholar 

  • Rodriguez-Trujillo R, Castillo-Fernandez O, Garrido M, Arundell M, Valencia A, Gomila G (2008) High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture. Biosens Bioelectron 24:290–296

    Google Scholar 

  • Saleh OA, Sohn LL (2001) Quantitative sensing of nanoscale colloids using a microchip Coulter counter. Rev Sci Instrum 72:4449–4451

    Google Scholar 

  • Saleh OA, Sohn LL (2003a) Direct detection of antibody-antigen binding using an on-chip artificial pore. PNAS 100:820–824

    Google Scholar 

  • Saleh OA, Sohn LL (2003b) An artificial nanopore for molecular sensing. Nano Lett 3:37–38

    Google Scholar 

  • Satake D, Ebi H, Oku N, Matsuda K, Takao H, Ashiki M, Ishida M (2002) A sensor for blood cell counter using MEMS technology. Sens Actuators B 83:77–81

    Google Scholar 

  • Schwan HP (1957) Electrical properties of tissue and cell suspensions. Adv Biol Med Phys 5:147–209

    Google Scholar 

  • Schwan HP (1963) Determination of biological impedances. In: Nastuk WL (ed) Physical techniques in biological research, vol 6. Academic Press, New York, pp 323–406

  • Schwan HP (1968) Electrode polarization impedance and measurements in biological materials. Ann N Y Acad Sci 148:191–209

    Google Scholar 

  • Scott R, Sethu P, Harnett CK (2008) Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter. Rev Sci Instrum 79:046104

    Google Scholar 

  • Shapiro HM (2004) The evolution of cytometers. Cytometry A 58A:13–20

    Google Scholar 

  • Shuler ML, Aris R, Tsuchiya HM (1972) Hydrodynamic focusing and electronic cell-sizing techniques. Appl Microbiol 24:384–388

    Google Scholar 

  • Sims CE, Allbritton NL (2007) Analysis of single mammalian cells on-chip. Lab Chip 7:423–440

    Google Scholar 

  • Skelley AM, Kirak O, Suh H, Jaenisch R, Voldman J (2009) Microfluidic control of cell pairing and fusion. Nat Methods 6:147–152

    Google Scholar 

  • Sohn LL, Saleh OA, Facer GR, Beavis AJ, Allan RS, Notterman DA (2000) Capacitance cytometry: measuring biological cells one by one. PNAS 97:10687–10690

    Google Scholar 

  • Spielman L, Gorsen SL (1968) Improving resolution in Coulter counting by hydrodynamic focusing. J Colloid Interface Sci 26:175–182

    Google Scholar 

  • Squires TM, Quake SR (2005) Microfluidics: fluidic physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    Google Scholar 

  • Stewart DA, Gowrishankar TR, Smith KC, Weaver JC (2005) Cylindrical cell membranes in uniform applied electric field: validation of a transport lattice method. IEEE Trans Biomed Eng 52:1643–1653

    Google Scholar 

  • Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Google Scholar 

  • Sun T, Morgan H, Green NG (2007a) Analytical solutions of ac electrokinetics in interdigitated electrode arrays: electric field, dielectrophoretic and travelling-wave dielectrophoretic forces. Phys Rev E 76:046610

    Google Scholar 

  • Sun T, Gawad S, Green NG, Morgan H (2007b) Dielectric spectroscopy of single cells: time domain analysis using Maxwell’s mixture equation. J Phys D Appl Phys 40:1–8

    Google Scholar 

  • Sun T, Green NG, Gawad S, Morgan H (2007c) Analytical electric field and sensitivity analysis for two microfluidic impedance cytometer designs. IET Nanobiotechnol 1:69–79

    Google Scholar 

  • Sun T, Gawad S, Bernabini C, Green NG, Morgan H (2007d) Broadband single cell impedance spectroscopy using maximum length sequences: theoretical analysis and practical considerations. Meas Sci Technol 18:2859–2868

    Google Scholar 

  • Sun T, Holmes D, Gawad S, Green NG, Morgan H (2007e) High speed multi-frequency impedance analysis of single particles in a microfluidic cytometer using maximum length sequences. Lab Chip 7:1034–1040

    Google Scholar 

  • Sun T, Bernabini C, Morgan H (2009a) Single-colloidal particle impedance spectroscopy: complete equivalent circuit analysis of polyelectrolyte microcapsules. Langmuir. doi:10.1021/1a903609u

  • Sun T, Berkel CV, Green NG, Morgan H (2009b) Digital signal processing methods for impedance microfluidic cytometry. Microfluid Nanofluid 6:179–187

    Google Scholar 

  • Svahn HA, Berg AVD (2007) Single cells or large populations. Lab Chip 7:544–546

    Google Scholar 

  • Tang H, Gao Y (2005) An impedance microsensor with coplanar electrodes and vertical sensing apertures. IEEE Sens 5:1346–1352

    Google Scholar 

  • Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584

    Google Scholar 

  • Tsong TY (1991) Electroporation of cell membranes. Biophys J 60:297–306

    Google Scholar 

  • Voldman J (2006) Electrical forces for microscale cell manipulation. Annu Rev Biomed Eng 8:425–454

    Google Scholar 

  • Wachner D, Simeonova M, Gimsa J (2002) Estimating the subcelluar absorption of electric field energy: equations for an ellipsoidal single shell model. Bioelectrochemistry 56:211–213

    Google Scholar 

  • Wang XB, Huang Y, Holzel R, Burt JPH, Pethig R (1993) Theoretical and experimental investigations of the interdependence of the dielectric, dielectrophoretic and electrorotational behaviour of colloidal particles. J Phya D Appl Phys 26:312–322

    Google Scholar 

  • Wang X, Becker FF, Gascoyne PRC (2002) Membrane dielectric changes inside induced apoptosis in HL-60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation. Biochimica Biophysica Acta 1564:412–420

    Google Scholar 

  • Wang Y-N, Kang Y, Xu D, Chon CH, Barnett L, Kalams SA, Li D, Li D (2008) On-chip counting the number and the percentage of CD4+ T lymphocyte. Lab Chip 8:309–315

    Google Scholar 

  • Watkins N, Venkatesan BM, Toner M, Rodriguez W, Rashid B (2009) A robust electrical microcytometer with 3-dimensional hydrofocusing. Lab Chip 9:3177–3184

    Google Scholar 

  • Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373

    Google Scholar 

  • Whitesides GM, Stroock AD (2001) Flexible methods for microfluidics. Phys Today 54:42–48

    Google Scholar 

  • Wood DK, Oh SH, Lee SH, Soh HT, Cleland AN (2005) High-bandwidth radio frequency Coulter counter. Appl Phys Lett 87:184106

    Google Scholar 

  • Wood DK, Braun GB, Fraikin JL, Swenson LJ, Reich NO, Cleland AN (2007a) A feasible approach to all-electronic digital labelling and readout for cell identification. Lab Chip 7:469–474

    Google Scholar 

  • Wood DK, Requa MV, Cleland AN (2007b) Microfabricated high-throughput electronic particle detector. Rev Sci Instrum 78:104301

    Google Scholar 

  • Wu X, Kang Y, Wang Y-N, Xu D, Li D, Li D (2008a) Microfluidic differential resistive pulse sensors. Electrophoresis 29:2754–2759

    Google Scholar 

  • Wu X, Chon CH, Wang Y-N, Kang Y, Li D (2008b) Simultaneous particle counting and detecting on a chip. Lab Chip 8:1943–1949

    Google Scholar 

  • Yang J, Huang Y, Wang XJ, Becker FF, Gascoyne PRC (1999) Dielectric properties of human leukocyte subpopulations determined by electrorotation as a cell separation criterion. J Biophys 76:3307–3314

    Google Scholar 

  • Zhang H, Chon CH, Pan X, Li D (2009) Methods for counting particles in microfluidic applications. Microfluid Nanofluid 7:739–749

    MATH  Google Scholar 

  • Zhe J, Jagtiani A, Dutta P, Hu J, Carletta J (2007) A micromachined high throughput Coulter counter for bioparticle detection and counting. J Micromech Microeng 17:303–313

    Google Scholar 

  • Zheng S, Liu M, Tai Y-C (2008) Micro coulter counters with platinum black electropolated electrodes for human blood cell sensing. Biomed Microdevices 10:221–231

    Google Scholar 

Download references

Acknowledgements

We acknowledge EPSRC/TSB for funding (Technology Program TS/G001405) and Dr. David Holmes for discussions. T. Sun would like to acknowledge the postdoctoral fellowship from National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, T., Morgan, H. Single-cell microfluidic impedance cytometry: a review. Microfluid Nanofluid 8, 423–443 (2010). https://doi.org/10.1007/s10404-010-0580-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-010-0580-9

Keywords

Navigation