Skip to main content

Advertisement

Log in

Ultrasound and microbubble-mediated drug delivery and immunotherapy

  • Special Feature: Review Article
  • Cutting-edge therapeutic ultrasound-its basic and clinical medicine; the spread of ultrasound-based theranostics
  • Published:
Journal of Medical Ultrasonics Aims and scope Submit manuscript

Abstract

Ultrasound induces the oscillation and collapse of microbubbles such as those of an ultrasound contrast agent, where these behaviors generate mechanical and thermal effects on cells and tissues. These, in turn, induce biological responses in cells and tissues, such as cellular signaling, endocytosis, or cell death. These physiological effects have been used for therapeutic purposes. Most pharmaceutical agents need to pass through the blood vessel walls and reach the parenchyma cells to produce therapeutic effects in drug delivery. Therefore, the blood vessel walls act as an obstacle to drug delivery. The combination of ultrasound and microbubbles is a promising strategy to enhance vascular permeability, improving drug transport from blood to tissues. This combination has also been applied to gene and protein delivery, such as cytokines and antigens for immunotherapy. Immunotherapy, in particular, is an attractive technique for cancer treatment as it induces a cancer cell-specific response. However, sufficient anti-tumor effects have not been achieved with the conventional cancer immunotherapy. Recently, new therapies based on immunomodulation with immune checkpoint inhibitors have been reported. Immunomodulation can be regarded as a new strategy for cancer immunotherapy. It was also reported that mechanical and thermal effects induced by the combination of ultrasound and microbubbles could suppress tumor growth by promoting the cancer-immunity cycle via immunomodulation in the tumor microenvironment. In this review, we provide an overview of the application of ultrasound and microbubble combination for drug delivery and activation of the immune system in the microenvironment of tumor tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Frenkel V. Ultrasound mediated delivery of drugs and genes to solid tumors. Adv Drug Deliv Rev. 2008;60:1193–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Snipstad S, Sulheim E, de Lange DC, et al. Sonopermeation to improve drug delivery to tumors: from fundamental understanding to clinical translation. Expert Opin Drug Deliv. 2018;15:1249–61.

    Article  CAS  PubMed  Google Scholar 

  3. Hynynen K, McDannold N, Vykhodtseva N, et al. Noninvasive MR imaging-guided focal opening of the blood-brain barrier in rabbits. Radiology. 2001;220:640–6.

    Article  CAS  PubMed  Google Scholar 

  4. Chowdhury SM, Abou-Elkacem L, Lee T, et al. Ultrasound and microbubble mediated therapeutic delivery: underlying mechanisms and future outlook. J Control Release. 2020;326:75–90.

    Article  CAS  PubMed  Google Scholar 

  5. Lentacker I, De Cock I, Deckers R, et al. Understanding ultrasound induced sonoporation: definitions and underlying mechanisms. Adv Drug Deliv Rev. 2014;72:49–64.

    Article  CAS  PubMed  Google Scholar 

  6. Peruzzi G, Sinibaldi G, Silvani G, et al. Perspectives on cavitation enhanced endothelial layer permeability. Colloids Surf B Biointerfaces. 2018;168:83–93.

    Article  CAS  PubMed  Google Scholar 

  7. VanBavel E. Effects of shear stress on endothelial cells: possible relevance for ultrasound applications. Prog Biophys Mol Biol. 2007;93:374–83.

    Article  CAS  PubMed  Google Scholar 

  8. Hwang JH, Tu J, Brayman AA, et al. Correlation between inertial cavitation dose and endothelial cell damage in vivo. Ultrasound Med Biol. 2006;32:1611–9.

    Article  PubMed  Google Scholar 

  9. Wrenn SP, Dicker SM, Small EF, et al. Bursting bubbles bilayers. Theranostics. 2012;2:1140–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7:41–53.

    Article  CAS  PubMed  Google Scholar 

  11. Pardridge WM. The blood-brain barrier: bottleneck in brain drug development. NeuroRx. 2005;2:3–14.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Pardridge WM. Blood-brain barrier drug targeting: the future of brain drug development. Mol Interv. 2003;3(90–105):51.

    Google Scholar 

  13. Arvanitis CD, Ferraro GB, Jain RK. The blood-brain barrier and blood-tumour barrier in brain tumours and metastases. Nat Rev Cancer. 2020;20:26–41.

    Article  CAS  PubMed  Google Scholar 

  14. van Tellingen O, Yetkin-Arik B, de Gooijer MC, et al. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat : Rev Comment Antimicrob Anticancer Chemother. 2015;19:1–12.

    Article  Google Scholar 

  15. Sheikov N, McDannold N, Vykhodtseva N, et al. Cellular mechanisms of the blood-brain barrier opening induced by ultrasound in presence of microbubbles. Ultrasound Med Biol. 2004;30:979–89.

    Article  PubMed  Google Scholar 

  16. Poon C, McMahon D, Hynynen K. Noninvasive and targeted delivery of therapeutics to the brain using focused ultrasound. Neuropharmacology. 2017;120:20–37.

    Article  CAS  PubMed  Google Scholar 

  17. Wei KC, Chu PC, Wang HY, et al. Focused ultrasound-induced blood-brain barrier opening to enhance temozolomide delivery for glioblastoma treatment: a preclinical study. PLoS ONE. 2013;8:e58995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dréan A, Lemaire N, Bouchoux G, et al. Temporary blood-brain barrier disruption by low intensity pulsed ultrasound increases carboplatin delivery and efficacy in preclinical models of glioblastoma. J Neurooncol. 2019;144:33–41.

    Article  PubMed  Google Scholar 

  19. McDannold N, Zhang Y, Supko JG, et al. Acoustic feedback enables safe and reliable carboplatin delivery across the blood-brain barrier with a clinical focused ultrasound system and improves survival in a rat glioma model. Theranostics. 2019;9:6284–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kovacs Z, Werner B, Rassi A, et al. Prolonged survival upon ultrasound-enhanced doxorubicin delivery in two syngenic glioblastoma mouse models. J Control Release. 2014;187:74–82.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang DY, Dmello C, Chen L, et al. Ultrasound-mediated delivery of paclitaxel for glioma: a comparative study of distribution, toxicity, and efficacy of albumin-bound versus cremophor formulations. Clin Cancer Res. 2020;26:477–86.

    Article  CAS  PubMed  Google Scholar 

  22. Liu HL, Hua MY, Chen PY, et al. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment. Radiology. 2010;255:415–25.

    Article  PubMed  Google Scholar 

  23. Wei HJ, Upadhyayula PS, Pouliopoulos AN, et al. Focused ultrasound-mediated blood-brain barrier opening increases delivery and efficacy of etoposide for glioblastoma treatment. Int J Radiat Oncol Biol Phys. 2021;110:539–50.

    Article  PubMed  Google Scholar 

  24. Yang FY, Wong TT, Teng MC, et al. Focused ultrasound and interleukin-4 receptor-targeted liposomal doxorubicin for enhanced targeted drug delivery and antitumor effect in glioblastoma multiforme. J Control Release. 2012;160:652–8.

    Article  CAS  PubMed  Google Scholar 

  25. Aryal M, Vykhodtseva N, Zhang YZ, et al. Multiple treatments with liposomal doxorubicin and ultrasound-induced disruption of blood-tumor and blood-brain barriers improve outcomes in a rat glioma model. J Control Release. 2013;169:103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Treat LH, McDannold N, Zhang Y, et al. Improved anti-tumor effect of liposomal doxorubicin after targeted blood-brain barrier disruption by MRI-guided focused ultrasound in rat glioma. Ultrasound Med Biol. 2012;38:1716–25.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shen Y, Pi Z, Yan F, et al. Enhanced delivery of paclitaxel liposomes using focused ultrasound with microbubbles for treating nude mice bearing intracranial glioblastoma xenografts. Int J Nanomed. 2017;12:5613–29.

    Article  CAS  Google Scholar 

  28. Timbie KF, Afzal U, Date A, et al. MR image-guided delivery of cisplatin-loaded brain-penetrating nanoparticles to invasive glioma with focused ultrasound. J Control Release. 2017;263:120–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Coluccia D, Figueiredo CA, Wu MY, et al. Enhancing glioblastoma treatment using cisplatin-gold-nanoparticle conjugates and targeted delivery with magnetic resonance-guided focused ultrasound. Nanomedicine. 2018;14:1137–48.

    Article  CAS  PubMed  Google Scholar 

  30. Sheybani ND, Breza VR, Paul S, et al. ImmunoPET-informed sequence for focused ultrasound-targeted mCD47 blockade controls glioma. J Control Release. 2021;331:19–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liu HL, Hsu PH, Lin CY, et al. Focused ultrasound enhances central nervous system delivery of bevacizumab for malignant glioma treatment. Radiology. 2016;281:99–108.

    Article  PubMed  Google Scholar 

  32. Park EJ, Zhang YZ, Vykhodtseva N, et al. Ultrasound-mediated blood-brain/blood-tumor barrier disruption improves outcomes with trastuzumab in a breast cancer brain metastasis model. J Control Release. 2012;163:277–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Chen PY, Hsieh HY, Huang CY, et al. Focused ultrasound-induced blood-brain barrier opening to enhance interleukin-12 delivery for brain tumor immunotherapy: a preclinical feasibility study. J Transl Med. 2015;13:93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Papachristodoulou A, Signorell RD, Werner B, et al. Chemotherapy sensitization of glioblastoma by focused ultrasound-mediated delivery of therapeutic liposomes. J Control Release. 2019;295:130–9.

    Article  CAS  PubMed  Google Scholar 

  35. Yang Q, Zhou Y, Chen J, et al. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int J Nanomed. 2021;16:185–99.

    Article  Google Scholar 

  36. Mainprize T, Lipsman N, Huang Y, et al. Blood-Brain Barrier Opening in Primary Brain Tumors with Non-invasive MR-Guided Focused Ultrasound: A Clinical Safety and Feasibility Study. Sci Rep. 2019;9:321.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Carpentier A, Canney M, Vignot A, et al. Clinical trial of blood-brain barrier disruption by pulsed ultrasound. Sci Transl Med. 2016;8:343re2.

    Article  PubMed  CAS  Google Scholar 

  38. Idbaih A, Canney M, Belin L, et al. Safety and feasibility of repeated and transient blood-brain barrier disruption by pulsed ultrasound in patients with recurrent glioblastoma. Clin Cancer Res. 2019;25:3793–801.

    Article  CAS  PubMed  Google Scholar 

  39. Chen KT, Lin YJ, Chai WY, et al. Neuronavigation-guided focused ultrasound (NaviFUS) for transcranial blood-brain barrier opening in recurrent glioblastoma patients: clinical trial protocol. Annals Transl Med. 2020;8:673.

    Article  Google Scholar 

  40. Chen KT, Chai WY, Lin YJ, et al. Neuronavigation-guided focused ultrasound for transcranial blood-brain barrier opening and immunostimulation in brain tumors. Sci Adv. 2021;7:eabd0772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  42. Petersen GH, Alzghari SK, Chee W, et al. Meta-analysis of clinical and preclinical studies comparing the anticancer efficacy of liposomal versus conventional non-liposomal doxorubicin. J Control Release. 2016;232:255–64.

    Article  CAS  PubMed  Google Scholar 

  43. Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244:108–21.

    Article  CAS  PubMed  Google Scholar 

  44. Xia H, Yang D, He W, et al. Ultrasound-mediated microbubbles cavitation enhanced chemotherapy of advanced prostate cancer by increasing the permeability of blood-prostate barrier. Transl Oncol. 2021;14:101177.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Sonoda S, Tachibana K, Uchino E, et al. Inhibition of melanoma by ultrasound-microbubble-aided drug delivery suggests membrane permeabilization. Cancer Biol Ther. 2007;6:1276–83.

    Article  CAS  PubMed  Google Scholar 

  46. Watanabe Y, Aoi A, Horie S, et al. Low-intensity ultrasound and microbubbles enhance the antitumor effect of cisplatin. Cancer Sci. 2008;99:2525–31.

    Article  CAS  PubMed  Google Scholar 

  47. Ueno Y, Sonoda S, Suzuki R, et al. Combination of ultrasound and bubble liposome enhance the effect of doxorubicin and inhibit murine osteosarcoma growth. Cancer Biol Ther. 2011;12:270–7.

    Article  CAS  PubMed  Google Scholar 

  48. Han H, Kim D, Jang Y, et al. Focused ultrasound-triggered chemo-gene therapy with multifunctional nanocomplex for enhancing therapeutic efficacy. J Control Release. 2020;322:346–56.

    Article  CAS  PubMed  Google Scholar 

  49. Yu J, Zhao Y, Liu C, et al. Synergistic anti-tumor effect of paclitaxel and miR-34a combined with ultrasound microbubbles on cervical cancer in vivo and in vitro. Clin Transl Oncol. 2020;22:60–9.

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi K, Matsumoto Y, Suzuki R, et al. Enhanced antitumor activity of combined lipid bubble ultrasound and anticancer drugs in gynecological cervical cancers. Cancer Sci. 2021;112:2493–503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ingram N, McVeigh LE, Abou-Saleh RH, et al. Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues. Theranostics. 2020;10:10973–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Yokoe I, Omata D, Unga J, et al. Lipid bubbles combined with low-intensity ultrasound enhance the intratumoral accumulation and antitumor effect of pegylated liposomal doxorubicin in vivo. Drug Deliv. 2021;28:530–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kotopoulis S, Dimcevski G, Gilja OH, et al. Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med Phys. 2013;40:072902.

    Article  PubMed  CAS  Google Scholar 

  54. Dimcevski G, Kotopoulis S, Bjånes T, et al. A human clinical trial using ultrasound and microbubbles to enhance gemcitabine treatment of inoperable pancreatic cancer. J Control Release. 2016;243:172–81.

    Article  CAS  PubMed  Google Scholar 

  55. Un K, Kawakami S, Yoshida M, et al. Efficient suppression of murine intracellular adhesion molecule-1 using ultrasound-responsive and mannose-modified lipoplexes inhibits acute hepatic inflammation. Hepatology. 2012;56:259–69.

    Article  CAS  PubMed  Google Scholar 

  56. Kurosaki T, Kawakami S, Higuchi Y, et al. Kidney-selective gene transfection using anionic bubble lipopolyplexes with renal ultrasound irradiation in mice. Nanomedicine. 2014;10:1829–38.

    Article  CAS  PubMed  Google Scholar 

  57. Omata D, Munakata L, Kageyama S, et al. Ultrasound image-guided gene delivery using three-dimensional diagnostic ultrasound and lipid-based microbubbles. J Drug Target. 2021;30:1–8.

    Google Scholar 

  58. Negishi Y, Ishii Y, Nirasawa K, et al. PMO delivery system using bubble liposomes and ultrasound exposure for duchenne muscular dystrophy treatment. Methods Mol Biol. 2018;1687:185–92.

    Article  CAS  PubMed  Google Scholar 

  59. Dobosz P, Dzieciątkowski T. The Intriguing History of Cancer Immunotherapy. Front Immunol. 2019;10:2965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. McCarthy EF. The toxins of William B Coley and the treatment of bone and soft-tissue sarcomas. Iowa Orthop J. 2006;26:154–8.

    PubMed  PubMed Central  Google Scholar 

  61. van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254:1643–7.

    Article  PubMed  Google Scholar 

  62. Chen DS, Mellman I. Oncology meets immunology: the cancer-immunity cycle. Immunity. 2013;39:1–10.

    Article  PubMed  CAS  Google Scholar 

  63. Lesterhuis WJ, Salmons J, Nowak AK, et al. Synergistic effect of CTLA-4 blockade and cancer chemotherapy in the induction of anti-tumor immunity. PLoS ONE. 2013;8:e61895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Gao J, Shi LZ, Zhao H, et al. Loss of IFN-γ pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397-404.e9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sade-Feldman M, Jiao YJ, Chen JH, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Binnewies M, Roberts EW, Kersten K, et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med. 2018;24:541–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Shukuya T, Carbone DP. Predictive markers for the efficacy of anti-PD-1/PD-L1 antibodies in lung cancer. J Thorac Oncol. 2016;11:976–88.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61.

    Article  CAS  PubMed  Google Scholar 

  70. Schuster SJ, Bishop MR, Tam CS, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380:45–56.

    Article  CAS  PubMed  Google Scholar 

  71. Maude SL, Laetsch TW, Buechner J, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378:439–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sharma P, Hu-Lieskovan S, Wargo JA, et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Onyshchenko M. The puzzle of predicting response to immune checkpoint blockade. EBioMedicine. 2018;33:18–9.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Haanen J. Converting Cold into Hot Tumors by Combining Immunotherapies. Cell. 2017;170:1055–6.

    Article  CAS  PubMed  Google Scholar 

  75. Galluzzi L, Chan TA, Kroemer G, et al. The hallmarks of successful anticancer immunotherapy. Sci Transl Med. 2018;10:eaat7807.

    Article  PubMed  CAS  Google Scholar 

  76. Ho YJ, Li JP, Fan CH, et al. Ultrasound in tumor immunotherapy: current status and future developments. J Control Release. 2020;323:12–23.

    Article  CAS  PubMed  Google Scholar 

  77. Wu F. High intensity focused ultrasound ablation and antitumor immune response. J Acoust Soc Am. 2013;134:1695–701.

    Article  CAS  PubMed  Google Scholar 

  78. Huang R, Li X, He Y, et al. Recent advances in CAR-T cell engineering. J Hematol Oncol. 2020;13:86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Okada N, Saito T, Mori K, et al. Effects of lipofectin-antigen complexes on major histocompatibility complex class I-restricted antigen presentation pathway in murine dendritic cells and on dendritic cell maturation. Biochim Biophys Acta. 2001;1527:97–101.

    Article  CAS  PubMed  Google Scholar 

  80. Kawamura K, Kadowaki N, Suzuki R, et al. Dendritic cells that endocytosed antigen-containing IgG-liposomes elicit effective antitumor immunity. J Immunother. 2006;29:165–74.

    Article  CAS  PubMed  Google Scholar 

  81. Wrangle JM, Velcheti V, Patel MR, et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19:694–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Naing A, Infante JR, Papadopoulos KP, et al. PEGylated IL-10 (pegilodecakin) induces systemic immune activation, CD8(+) T cell invigoration and polyclonal T cell expansion in cancer patients. Cancer Cell. 2018;34:775-91.e3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Lasek W, Zagożdżon R, Jakobisiak M. Interleukin 12: still a promising candidate for tumor immunotherapy? Cancer Immunol Immunother. 2014;63:419–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. David JM, Dominguez C, Hamilton DH, et al. The IL-8/IL-8R axis: a double agent in tumor immune resistance. Vaccines. 2016;4:22.

    Article  PubMed Central  CAS  Google Scholar 

  85. Mollica Poeta V, Massara M, Capucetti A, et al. Chemokines and chemokine receptors: new targets for cancer immunotherapy. front Immunol. 2019;10:379.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Wang Y, Deng W, Li N, et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front Pharm. 2018;9:185.

    Article  CAS  Google Scholar 

  87. Galluzzi L, Buqué A, Kepp O, et al. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111.

    Article  CAS  PubMed  Google Scholar 

  88. van den Bijgaart RJ, Eikelenboom DC, Hoogenboom M, et al. Thermal and mechanical high-intensity focused ultrasound: perspectives on tumor ablation, immune effects and combination strategies. Cancer Immunol Immunother. 2017;66:247–58.

    Article  PubMed  Google Scholar 

  89. Suzuki R, Oda Y, Omata D, et al. Tumor growth suppression by the combination of nanobubbles and ultrasound. Cancer Sci. 2016;107:217–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu ZL, Zhu XQ, Lu P, et al. Activation of tumor-infiltrating antigen presenting cells by high intensity focused ultrasound ablation of human breast cancer. Ultrasound Med Biol. 2009;35:50–7.

    Article  CAS  PubMed  Google Scholar 

  91. Miyazaki M, Yuba E, Hayashi H, et al. Development of pH-responsive hyaluronic acid-based antigen carriers for induction of antigen-specific cellular immune responses. ACS Biomater Sci Eng. 2019;5:5790–7.

    Article  CAS  PubMed  Google Scholar 

  92. Suzuki R, Oda Y, Utoguchi N, et al. A novel strategy utilizing ultrasound for antigen delivery in dendritic cell-based cancer immunotherapy. J Control Release. 2009;133:198–205.

    Article  CAS  PubMed  Google Scholar 

  93. Oda Y, Suzuki R, Otake S, et al. Prophylactic immunization with Bubble liposomes and ultrasound-treated dendritic cells provided a four-fold decrease in the frequency of melanoma lung metastasis. J Control Release. 2012;160:362–6.

    Article  CAS  PubMed  Google Scholar 

  94. Un K, Kawakami S, Suzuki R, et al. Suppression of melanoma growth and metastasis by DNA vaccination using an ultrasound-responsive and mannose-modified gene carrier. Mol Pharm. 2011;8:543–54.

    Article  CAS  PubMed  Google Scholar 

  95. Pahk KJ, Shin CH, Bae IY, et al. Boiling histotripsy-induced partial mechanical ablation modulates tumour microenvironment by promoting immunogenic cell death of cancers. Sci Rep. 2019;9:9050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Rafiq S, Hackett CS, Brentjens RJ. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat Rev Clin Oncol. 2020;17:147–67.

    Article  PubMed  Google Scholar 

  97. Presset A, Bonneau C, Kazuyoshi S, et al. Endothelial cells, first target of drug delivery using microbubble-assisted ultrasound. Ultrasound Med Biol. 2020;46:1565–83.

    Article  PubMed  Google Scholar 

  98. Yang C, Du M, Yan F, et al. Focused ultrasound improves NK-92MI cells infiltration into tumors. Front Pharm. 2019;10:326.

    Article  CAS  Google Scholar 

  99. Alkins R, Burgess A, Kerbel R, et al. Early treatment of HER2-amplified brain tumors with targeted NK-92 cells and focused ultrasound improves survival. Neuro Oncol. 2016;18:974–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Titov A, Zmievskaya E, Ganeeva I, et al. Adoptive Immunotherapy beyond CAR T-Cells. Cancers (Basel). 2021;13:743.

    Article  CAS  Google Scholar 

  101. Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy. Nat Immunol. 2016;17:1025–36.

    Article  CAS  PubMed  Google Scholar 

  102. Garrido F, Aptsiauri N, Doorduijn EM, et al. The urgent need to recover MHC class I in cancers for effective immunotherapy. Curr Opin Immunol. 2016;39:44–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Suzuki R, Namai E, Oda Y, et al. Cancer gene therapy by IL-12 gene delivery using liposomal bubbles and tumoral ultrasound exposure. J Control Release. 2010;142:245–50.

    Article  CAS  PubMed  Google Scholar 

  104. Gao JQ, Sugita T, Kanagawa N, et al. A single intratumoral injection of a fiber-mutant adenoviral vector encoding interleukin 12 induces remarkable anti-tumor and anti-metastatic activity in mice with Meth-A fibrosarcoma. Biochem Biophys Res Commun. 2005;328:1043–50.

    Article  CAS  PubMed  Google Scholar 

  105. Heath VL, Bicknell R. Anticancer strategies involving the vasculature. Nat Rev Clin Oncol. 2009;6:395–404.

    Article  CAS  PubMed  Google Scholar 

  106. Li N, Tang J, Yang J, et al. Tumor perfusion enhancement by ultrasound stimulated microbubbles potentiates PD-L1 blockade of MC38 colon cancer in mice. Cancer Lett. 2021;498:121–9.

    Article  CAS  PubMed  Google Scholar 

  107. de Leon A, Perera R, Nittayacharn P, et al. Ultrasound contrast agents and delivery systems in cancer detection and therapy. Adv Cancer Res. 2018;139:57–84.

    Article  PubMed  CAS  Google Scholar 

  108. Hunt SJ, Gade T, Soulen MC, et al. Antivascular ultrasound therapy: magnetic resonance imaging validation and activation of the immune response in murine melanoma. J Ultrasound Med. 2015;34:275–87.

    Article  PubMed  Google Scholar 

  109. Omata D, Hagiwara F, Munakata L, et al. Characterization of brain-targeted drug delivery enhanced by a combination of lipid-based microbubbles and non-focused ultrasound. J Pharm Sci. 2020;109:2827–35.

    Article  CAS  PubMed  Google Scholar 

  110. Omata D, Maruyama T, Unga J, et al. Effects of encapsulated gas on stability of lipid-based microbubbles and ultrasound-triggered drug delivery. J Control Release. 2019;311–312:65–73.

    Article  PubMed  CAS  Google Scholar 

  111. Maruyama T, Sugii M, Omata D, et al. Effect of lipid shell composition in DSPG-based microbubbles on blood flow imaging with ultrasonography. Int J Pharm. 2020;590:119886.

    Article  CAS  PubMed  Google Scholar 

  112. Unga J, Omata D, Kudo N, et al. Development and evaluation of stability and ultrasound response of DSPC-DPSG-based freeze-dried microbubbles. J Liposome Res. 2019;29:368–74.

    Article  CAS  PubMed  Google Scholar 

  113. Song KH, Fan AC, Hinkle JJ, et al. Microbubble gas volume: a unifying dose parameter in blood-brain barrier opening by focused ultrasound. Theranostics. 2017;7:144–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Negishi Y, Hamano N, Tsunoda Y, et al. AG73-modified Bubble liposomes for targeted ultrasound imaging of tumor neovasculature. Biomaterials. 2013;34:501–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Tamotsu Maruyama for assistance with the editing. We also thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Suzuki.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omata, D., Munakata, L., Maruyama, K. et al. Ultrasound and microbubble-mediated drug delivery and immunotherapy. J Med Ultrasonics (2022). https://doi.org/10.1007/s10396-022-01201-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10396-022-01201-x

Keywords

Navigation