Skip to main content
Log in

Ichnology of Lower Cretaceous prodelta and delta front deposits of the Sidi Khalif Formation, Central Tunisia

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

This paper describes the ichnology and sedimentology of the middle Berriasian sedimentary succession of the Sidi Khalif Formation outcropping in Jebel Meloussi, Central Tunisia. The succession records deltaic progradation above outer shelf deposits and shows the vertical stacking of thickening and coarsening-upward parasequences dominated by hummocky cross-stratification, parallel lamination and abundant gutter casts. The mudstones and the thinly bedded fine-grained sandstones of the prodelta are characterized by scarce and low diverse horizontal trace fossils of the impoverished distal Cruziana ichnofacies, including cf. Thalassinoides, Phycosiphon, Planolites, Helminthoidichnites and cf. Helminthoidichnites. In contrast, trace fossils of the wave-dominated delta-front are dominated by deposit-feeding ichnotaxa, such as Rhizocorallium commune, Arenicolites isp., R. ?jenense, Thalassinoides and Planolites, which represent the proximal Cruziana ichnofacies. The lack of bioturbation structures in the amalgamated hummocky cross-stratification beds of the delta front is mostly related to the high frequency and/or high intensity episodic erosional amalgamation and deposition associated with storms. The difference between Rhizocorallium ichnospecies help to depict the erosional discontinuities bounding parasequences. The transgressive surfaces (TS) are characterized by R. ?jenense and by R. commune.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Bednarz M, McIlroy D (2009) Three-dimensional reconstruction of “phycosiphoniform” burrows: implications for identification of trace fossils in core. Palaeontol Electr 12(13A):15

    Google Scholar 

  • Belaústegui Z, de Gibert JM, López-Blanco M, Bajo I (2014) Recurrent constructional pattern of the crustacean burrow Sinusichnus sinuous from the Paleogene and Neogene of Spain. Acta Geol Polonica 59(2):461–474

    Google Scholar 

  • Ben Ammar S, Riahi S, Belhadj Mohamed A, Layeb M (2020) Source rock characterization of the upper Barremian, Albian and Cenomanian-Turonian organic-rich strata outcropping in Oued Bazina area, NE of Thibar diapir: Northern Tunisia. Arab J Geosci 13:1282. https://doi.org/10.1007/s12517-020-06315

    Article  Google Scholar 

  • Ben Ferjani A, Burollet PF, Mejri F (1990) Petroleum geology of Tunisia. ETAP Memoir Ed., 194 p

  • Ben Nsir S, Boughdiri M (2016) Commentaires sur: «Biozones de calpionelles et d’ammonites du Berriasien inférieur et moyen de la Formation Sidi Khalif au Jebel Meloussi, Tunisie centrale» par Kamel Maalaoui & Fouad Zargouni. Rev De Paléobiologie 35:373–384

    Google Scholar 

  • Boyd C, McIlroy D (2018) The morphology and mode of formation of Neoeione igen. nov. from the Carboniferous of northern England. Paläontol Z 92:179–190

    Google Scholar 

  • Bromley RG (1996) Trace fossils: biology, taphonomy and applications. Chapman and Hall, London, 361 pp

  • Bromley RG, Knaust D (2012) Trace fossils as indicators of sedimentary environments. Developments in sedimentology, vol 64. Elsevier, Amsterdam

    Google Scholar 

  • Buatois LA, Mángano MG (2011) Ichnology: organism-substrate interactions in space and time. Cambridge University Press, Cambridge, p 358

    Google Scholar 

  • Buatois LA, Santiago N, Herrera M, Plink-Björklund P, Steel RJ, Espin M, Parra K (2012) Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentology 59:1568–1612

    Google Scholar 

  • Buatois LA, Mángano MG, Pattinson AJ (2019) Ichnology of prodeltaic hyperpycnite-turbidite channel complexes and lobes from the upper cretaceous prairie canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology 66:1825–1860

    Google Scholar 

  • Buckman JO (2001) Parataenidium, a new Taenidium-like ichnogenus from the Carboniferous of Ireland. Ichnos 8:83–97

    Google Scholar 

  • Burkhalter P (1999) Etude géologique (tectonique, sédimentologie, stratigraphie séquentielle) des formations Sidi Kralif et Mel (Crétacé inférieur) au Jebel Meloussi (Tunisie centrale). Master ingénieur-géologue, Univ. Genève, 71 p. (unpublished)

  • Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Ann Mines Géol Tunis 18:1–350

    Google Scholar 

  • Burollet PF, Memmi L, M’Rabet A (1983) Le Crétacé inferieur de Tunisie. Aperçu stratigraphique et sédimentologique. Zitteliana 10:255–264

    Google Scholar 

  • Busnardo R, Donze P, Le Hegarat G, Memmi L, M’Rabet A (1976) Précisions biostratigraphiques nouvelles sur le Berriasien des Djebels Nara et Sidi Kralif (Tunisie Centrale). Géobios 9:231–250

    Google Scholar 

  • Busnardo R, Donze P, Khessibi M, Le Hégarat G, Memmi L, M’Rabet A (1981) La Formation Sidi Kralif (Tithonien–Berriasien) en Tunisie centrale. Synthèse stratigraphique et sédimentologique. Ann Mines Géol Tunis 31:115–122

    Google Scholar 

  • Callow RH, McIlroy D, Kneller B, Dykstra M (2013) Integrated ichnological and sedimentological analysis of a Late Cretaceous submarine channel-levee system: the Rosario Formation, Baja California, Mexico. Mar Pet Geol 41:277–294

    Google Scholar 

  • Crimes TP (1977) Trace fossils of an Eocene deep-sea fan, northern Spain. In: Crimes TP, Harper JC (eds) Trace fossils 2. Geological Journal Special Issue 9:71–90

  • Dalrymple RW, Choi K (2007) Morphologic and facies trends through the fluvial-marine transition in tide dominated depositional systems: a schematic framework for environmental and sequence stratigraphic interpretation. Earth Sci Rev 81:135–174

    Google Scholar 

  • Dalrymple RW, Baker EK, Harris PT, Hughes MG (2003) Sedimentology and stratigraphy of a tide-dominated, foreland-basin delta (Fly River, Papua New Guinea). In: Sidi FH, Nummedal D, Imbert P, Darman H, Posamentier HW (eds) Tropical Deltas of Southeast Asia—Sedimentology, Stratigraphy, and Petroleum Geology. SEPM Society for Sedimentary Geology, pp 147–173

  • Gibert JM de (1996) A new decapod burrow system from the NW Mediterranean Pliocene. Rev Esp Paleontol 11:251–254

    Google Scholar 

  • Gibert JM de, Benner JS (2002) The trace fossil Gyrochorte: ethology and paleoecology. Rev Esp Paleontol 17:1–12

    Google Scholar 

  • Demircan H, Uchman A (2016) Ichnology of prodelta deposits oftheMezardere Formation (late Eocene–early Oligocene) in the Gökçeada Island, western Turkey. Geodin Acta 28:86–100

    Google Scholar 

  • Dercourt J, Ricou LE, Vrielynck B (1993) Atlas Tethys Palaeoenvironmental Maps. 14 maps. Gauthier-Villars, Paris, 307 pp

  • Ehrenberg K (1944) Ergänzende Bemerkungen zu den seinerzeit aus dem Miozäan von Burgschleinitz beschrieben Gangkernen und Bauten dekapoder Krebse. Paläontol Z 23:354–359

    Google Scholar 

  • Ekdale AA (1992) Muckraking and mudslinging: the joys of deposit-feeding. In: Maples CG, West RR (eds) Trace fossils. Short Courses in Paleontology 5:145–171. The Paleontological Society, Knoxville, Tennessee

  • Ekdale AA, Bromley RG (2003) Paleoethologic interpretation of complex Thalassinoides in shallow-marine limestones, Lower Ordovician, southern Sweden. Palaeogeogr Palaeoclimat Palaeoecol 192:221–227

    Google Scholar 

  • Firtion F (1958) Sur la présence d’ichnites dans le Portlandian de l’lle d’Oleéron. (Charente maritime). Ann Univ Saraviens (naturw) 7:107–112

    Google Scholar 

  • Fischer-Ooster C (1858) Die fossilen Fucoiden der Schweizer Alpen, nebst Erörterungen über deren geologisches Alter. Huber, Bern, p 72

    Google Scholar 

  • Fitch A (1850) A historical, topographical and agricultural survey of the County of Washington. Part 2–5. Trans NY Agric Soc 9:753–944

    Google Scholar 

  • Frey RW, Goldring R (1992) Marine event beds and recolonization surfaces as revealed by trace fossil analysis. Geol Mag 129:325–335

    Google Scholar 

  • Frey RW, Seilacher A (1980) Uniformity in marine invertebrate ichnology. Lethaia 23:183–207

    Google Scholar 

  • Frey RW, Curran AH, Pemberton GS (1984) Trace making activities of crabs and their environmental significance: the ichnogenus Psilonichnus. J Paleontol 58:333–350

    Google Scholar 

  • Fürsich FT, Alberti M, Pandey DK (2017) Behavioural variants of the trace fossil Gyrochorte. Zitteliana 89:13–22

    Google Scholar 

  • Ghibaudo G, Grandesso P, Massari F, Uchman A (1996) Use of trace fossils in delineating sequence stratigraphic surfaces (Tertiary Venetian Molasse Basin, northeastern Italy). Palaeogeogr Palaeoclimat Palaeoecol 120:261–279

    Google Scholar 

  • Giannetti A, Monaco P, Caracuel JE, Soria J, Yébenes A (2007) Functional morphology and ethology of decapod crustaceans gathered by Thalassinoides branched burrows in Mesozoic shallow water environments. In: 3rd Symposium on Mesozoic and Cenozoic Decapod Crustaceans. Museo di StoriaNaturale di Milano, May 23–25. Memorie della Società Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano 35:48–52

  • Goldring R (1962) Trace fossils of the Baggy Beds (Upper Devonian) of North Devon, England. Paläontol Z 36:232–251

    Google Scholar 

  • Goldring R, Pollard JE, Taylor AM (1991) Anconichnus horizontalis: a pervasive ichnofabric-forming trace fossil in the post-Paleozoic offshore siliciclastic facies. Palaios 6:250–263

    Google Scholar 

  • Hakes WG (1976) Trace fossils and depositional environment of four clastic units, Upper Pennsylvanian megacyclothems, northeast Kansas. Univ Kansas Palaeontol Contrib 63:1–46

    Google Scholar 

  • Hall J (1847) Paleontology of New York, vol 1. C. Van Benthuysen, Albany, 338 pp

  • Hamdi O, Da Silva AC, Yaich C (2021) Linking the variation of sediment accumulation rate to short term sea-level change using cyclostratigraphy: Case study of the lower Berriasian hemipelagic sediments in Central Tunisia (Southern Tethys). Front Earth Sci 9:638441. https://doi.org/10.3389/feart.2021.638441

    Article  Google Scholar 

  • Heer O (1865) Die Urwelt der Schweiz. Friedrich Schultez, Zürich, 622 pp

  • Heinberg C (1973) The internal structure of trace fossils Gyrochorte and Curvolithus. Lethaia 6:227–238

    Google Scholar 

  • Hofmann HJ, Patel IM (1989) Trace fossils from the type “Etchemian Series” (Lower Cambrian Ratcliffe Brook Formation), Saint John area, New Brunswick, Canada. Geol Mag 126:139–157

    Google Scholar 

  • Izumi K (2014) Utility of geochemical analysis of trace fossils: case studies using Phycosiphon incertum from the Lower Jurassic shallow-marine (Higashinagano Formation, southwest Japan) and Pliocene deep-marine deposits (Shiramazu Formation, central Japan). Ichnos 21:62–72

    Google Scholar 

  • Keighley DG, Pickerill RK (1995) The ichnotaxa Palaeophycus and Planolites: historical perspectives and recommendations. Ichnos 3:301–309

    Google Scholar 

  • Knaust D (2013) The ichnogenus Rhizocorallium: classification, trace makers, palaeoenvironments and evolution. Earth Sci Rev 126:1–47

    Google Scholar 

  • Knaust D (2017) Atlas of trace fossils in well core: appearance, taxonomy and interpretation. Springer, Berlin, p 271

    Google Scholar 

  • Knaust D, Neumann C (2016) Asteriacites von Schlotheim, 1820—the oldest valid ichnogenus name—and other asterozoan-produced trace fossils. Earth Sci Rev 157:111–120

    Google Scholar 

  • Knaust D, Uchman A, Hagdorn H (2016) The supposed isopod burrow Sinusichnus giberti isp. n. from the Middle Triassic of Germany: an example of behavioral convergence. Ichnos 23:138–146

    Google Scholar 

  • Kowal-Linka M, Bodzioch A (2011) Sedimentological implications of an unusual form of the trace fossil Rhizocorallium from the Lower Muschelkalk (Middle Triassic), S. Poland. Facies 57:695–703

    Google Scholar 

  • Lamb MP, Myrow PM, Lukens C, Houck K, Strauss J (2008) Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation, Colorado, USA. J Sediment Res 78:480–498

    Google Scholar 

  • M’Rabet A (1981) Stratigraphie, sédimentation et diagenèse carbonate des séries du Crétacé inférieur de Tunisie centrale. –Thèse de l’Université Paris Sud, Orsay, 540 p

  • M’Rabet A (1984) Neocomian deltaïc complex in central Tunisia: a particular example of ancient sedimentation and basin evolution. Sediment Geol 40:191–209

    Google Scholar 

  • M’Rabet A (1987) Stratigraphie, sédimentation et diagenèse carbonatée des séries du Crétacé inférieur de Tunisie centrale. Ann Mines Géol 30:412

    Google Scholar 

  • Maalaoui K, Zargouni F (2016) Biozones de calpionelles et d’ammonites du Berriasien inférieur et moyen de la Formation Sidi Khalif au Jebel Meloussi, Tunisie centrale. Rev De Paléobiologie 35:373–384

    Google Scholar 

  • MacEachern JA, Raychaudhuri I, Pemberton SG (1992) Stratigraphic applications of the Glos[1]sifungites Ichnofacies: delineating discontinuities in the rock record. In: Pemberton SG (ed) Applications of Ichnology to Petroleum Exploration. SEPM a Core Workshop Notes, vol 17. pp 169–198

  • MacEachern JA, Bann KL, Bhattacharya JP, Howell CD (2005) Ichnology of deltas: organism responses to the dynamic interplay of rivers, waves, storms and tides. In: Bhattacharya JP, Giosan L (eds) River Deltas: Concepts, Models and Examples, SEPM Special Publication 83:49–85

  • MacEachern JA, Bann KL, Pemberton SG, Gingras MK (2007) The ichnofacies paradigm: high-resolution paleoenvironmental interpretation of the rock record. In: MacEachern JA, Bann KL, Gingras MK, Pemberton SG (eds) Applied ichnology, Applied Ichnology, SEPM Short Course Notes 52:27–64

  • MacEachern JA, Pemberton SG, Gingras MK, Bann KL (2010) Ichnology and facies models. In: Dalrymple RG, James NP (eds) Facies Models. Geological Association of Canada. Geotext 3:19–58

  • Mayer G (1954) Ein neues Rhizocorallium aus dem Mittleren Hauptmuschelkalk von Bruchsal. Beiträge Zur Naturkundlichen Forschung in Südwest Deutschland 13:80–83

    Google Scholar 

  • Memmi L, Donze P, Combémorel R, Le Hégarat G (1989) The transition from Jurassic to Cretaceous in northeast Tunisia: biostratigraphic details and distribution of facies. Cretac Res 10:137–151

    Google Scholar 

  • Mikuláš R (1992) The ichnogenus Asteriacites: paleoenvironmental trends. Věst Čes Geol Úst 67:423–433

    Google Scholar 

  • Miller W (ed) (2007) Trace fossils: concepts, problems, prospects. Elsevier, Amsterdam

    Google Scholar 

  • Miller SA, Dyer CB (1878) Contributions to Paleontology, No. 2. [Privately published], Cincinnati, Ohio, 11 pp

  • Miller MF, Smail SE (1997) A semiquantitative field method for evaluating bioturbation on bedding planes. Palaios 12:391–396

    Google Scholar 

  • Moyano Paz D, Richiano S, Varela AN, Gómez Dacál AR, Poiré DG (2020) Ichnological signatures from wave- and fluvial-dominated deltas: The La Anita Formation, Upper Cretaceous, Austral-Magallanes Basin, Patagonia. Mar Pet Geol 114:104168

    Google Scholar 

  • Myrow PA (1995) Thalassinoides and the enigma of Early Paleozoic open-framework burrow system. Palaios 10:58–74

    Google Scholar 

  • Naruse H, Nifuku K (2008) Three-dimensional morphology of the ichnofossil Phycosiphon incertum and its implication for paleoslope inclination. Palaios 23:270–279

    Google Scholar 

  • Neto de Carvalho C, Viegas PA, Cachã M (2007) Thalassinoides and its producer: populations of Mecochirus buried within their burrow systems, Boca Do Chapim Formation (Lower Cretaceous), Portugal. Palaios 22:104–109

    Google Scholar 

  • Nicholson HA (1873) Contributions to the study of the errant annelids of the older Palaeozoic rocks. R Soc Lond Proc 21:288–290

    Google Scholar 

  • Nieto LM, Rodríguez-Tovar FJ, Molina JM, Reolid M, Ruiz-Ortiz PA (2014) Unconformity surfaces in pelagic carbonate environments: a case from the middle Bathonian of the Betic Cordillera, SE Spain. Annales Geol Soc Pol 84:281–295

    Google Scholar 

  • Nieto LM, Reolid M, Rodríguez-Tovar FJ, Castro JM, Molina JM, Ruiz-Ortiz PA (2018) An integrated analysis (microfacies and ichnology) of a shallow carbonate-platform succession: upper Aptian, Lower Cretaceous, Betic Cordillera. Facies 64:4. https://doi.org/10.1007/s10347-017-0515-y

    Article  Google Scholar 

  • Osgood RG (1970) Trace fossils of the Cincinnati area. Palaeontogr Am 6:281–444

    Google Scholar 

  • Pemberton SG, Frey RW (1982) Trace fossil nomenclature and the Planolites-Palaeophycus dilemma. J Paleontol 56:843–881

    Google Scholar 

  • Pemberton SG, MacEachern JA (1995) The sequence stratigraphic significance of trace fossils: examples from the Cretaceous foreland basin of Alberta, Canada. In: Van Wagoner JC, Bertram GT (eds) Sequence stratigraphy of foreland basin deposits; outcrop and subsurface examples from the Cretaceous of North America. American Association of Petroleum Geologists Memoir 64:429–475

  • Pemberton SG, Spila MV, Pulham AJ, Saunders T, MacEachern JA, Robbins D, Sinclair IK (2001) Ichnology and sedimentology of shallow to marginal marine systems: Ben Nevis and Avalon Reservoirs, Jeanne d’Arc Basin. Geological Association of Canada, Short Course Notes 15:343 pp

  • Pemberton SG, MacEachern JA, Saunders T, (2004) Stratigraphic applications of substrate-specific ichnofacies: delineating discontinuities in the rock record. In: McIlroy D (ed) The Application of Ichnology to Palaeoenvironmental and Stratigraphic Analysis. Geological Society, Special Publications, 228:29–62. London

  • Pemberton SG, MacEachern JA, Dashtgard SE et al (2012) Shorefaces. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology, 64:563–604

  • Ramos A, Galloway WE (1990) Facies and sand-body geometry of the Queen City (Eocene) tide-dominated delta-margin embayment, NW Gulf of Mexico Basin. Sedimentology 37:1079–1098

    Google Scholar 

  • Reolid J, Reolid M (2020) Geochemical compositional mapping of Lower Jurassic trace fossils: Palaeoenvironmental significance and methodological implications. Palaeogeogr Palaeoclimatol Palaeocol 538:109456

    Google Scholar 

  • Reolid M, Marok A, Lasgaa I (2014) Taphonomy and ichnology: tools for interpreting a maximum flooding interval in the Berriasian of Tlemcen Domain (Western Tellian Atlas, Algeria). Facies 60:905–920

    Google Scholar 

  • Reolid M, García-García F, Reolid J, de Castro A, Bueno JF, Martín-Suárez E (2016) Palaeoenvironmental interpretation of a sand-dominated coastal system of the Upper Miocene of Eastern Guadalquivir Basin (south Spain): fossil assemblages, ichnology and taphonomy. J Iber Geol 42:275–290

    Google Scholar 

  • Riahi S, Uchman A, Stow D, Soussi M, Ben Ismail-Lattrache K (2014) Deep-sea trace fossils of the Oligocene-Miocene Numidian Formation, northern Tunisia. Palaeogeogr Palaeoclimatol Palaeoecol 414:155–177

    Google Scholar 

  • Rieth A (1932) Neue Funde spongeliomorpherFucoiden aus dem Jura Schwabens. Geologische Und Paläontogische Abhandlungen, Neue Folge 19:257–294

    Google Scholar 

  • Rodríguez-Tovar FJ, Nieto LM (2013) Composite trace fossil assemblage in distal carbonate swell settings from the pelagic Tethyan domain (Middle Jurassic, Betic Cordillera, southern Spain). Ichnos 20:43–53

    Google Scholar 

  • Rodríguez-Tovar FJ, Pérez-Valera F, Pérez-López A (2007) Ichnological analysis in high resolution sequence stratigraphy: the Glossifungites ichnofacies in Triassic successions from the Betic Cordillera (southern Spain). Sed Geol 198:293–307

    Google Scholar 

  • Rodríguez-Tovar FJ, Buatois LA, Piñuela L, Mángano MG, García-Ramos JC (2012) Palaeoenvironmental and functional interpretation of Rhizocorallium jenense spinosus (ichnosubsp. nov.) from the lower Jurassic of Asturias, northern Spain. Palaeogeogr Palaeoclimat Palaeoecol 339–341:114–120

    Google Scholar 

  • Rodríguez-Tovar FJ, Nagy J, Reolid M (2014) Palaeoenvironment of Eocene prodelta in Spitsbergen recorded by the trace fossil Phycosiphon incertum. Polar Res 33(1):23786. https://doi.org/10.3402/polar.v33.23786

    Article  Google Scholar 

  • Saadi J, Ben Youssef M, Souquet P, Peybernes B, Andreu B (1994) Stratigraphie sequentielle du Crétacé inferieur de la région d’Enfidha (Nord-Est de la Tunisie). C R Acad Sci Paris 319(série II)119–125

  • Salter JW (1857) On annelide-burrows and surface markings from the Cambrian rocks of the Longmynd. Quat J Geol Soc London 13:199–206

  • Savrda CE, Krawinkel H, McCarthy FMG, Olson HC, Mountain G (2001) Ichnofabrics of a Pleistocene slope succession, New Jersey margin: relations to climate and sea-level dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 171:41–61

    Google Scholar 

  • Schlirf M (2011) A new classification concept for U-shaped spreite trace fossils. Neues Jb Geol Paläontol Abh 260:33–54

    Google Scholar 

  • Schmid EE (1876) Der Muschelkalk des östlichenThüringen. 20 pp; Jena (Frommann)

  • Schnyder J, Gorin G, Soussi M, Baudin F, Deconinck JF (2005) A record of the Jurassic/Cretaceous boundary climatic variation on the southern margin of the Tethys: clay minerals and palynofacies of the early Cretaceous Jebel Meloussi section (Central Tunisia, Sidi Kralif Formation). Bull Soc Géol Fr 176:171–182

    Google Scholar 

  • Seilacher A (2007) Trace fossil analysis. Springer, Berlin, p 226

    Google Scholar 

  • Sendra J, Reolid M, Reolid J (2019) Palaeoenvironmental interpretation of the Pliocene fan-delta system of the Vera Basin (SE Spain): fossil assemblages, ichnology and taphonomy. Palaeoworld 29:769–788

    Google Scholar 

  • Soua M (2016) Cretaceous oceanic anoxic events (OAEs) recorded in the northern margin of Africa as possible oil and gas shale potential in Tunisia: an overview. Int Geol Rev 58:277–320

    Google Scholar 

  • Soussi M (2002) Le Jurassique de la Tunisie atlasique: stratigraphie, dynamique sédimentaire, paléogéographie et intérêt pétrolier. Docum Lab Geol Lyon 157:363p

    Google Scholar 

  • Soussi M, Ben Ismaïl MH, M’Rabet A (1990) Les “black shales toarciens“ de Tunisie centrale: témoins d’événement anoxique sur la marge sud tethysienne. C R Acad Sci 310:602–612

    Google Scholar 

  • Soussi M, Enay R, Mangold C, M’Rabet A, Rakus M, Rabhi M (1991) Datations par ammonites des séries et des discontinuités du Jurassique de l’Axe Nord-Sud (Tunisie centrale). C R Acad Sci 312:501–507

    Google Scholar 

  • Tate G (1859) The geology of Beadnell in the county of Northumberland, with a description of some annelids of the Carboniferous formation. Geologist 154:59–70

    Google Scholar 

  • Tonkin NS (2012) Deltas. In: Knaust D, Bromley RG (eds) Trace fossils as indicators of sedimentary environments. Developments in Sedimentology 64:507–528

  • Uchman A (1992) Ichnogenus Rhizocorallium in the Paleogene flysch (outer Western Carpathians, Poland). Geol Carpath 43:57–60

    Google Scholar 

  • Uchman A, Tchoumatchenco P (2003) A mixed assemblage of deep-sea and shelf trace fossils from the Lower Cretaceous (Valanginian) Kamchia Formation in the Troyan region, central Fore-Balkan, Bulgaria. Ann Soc Geol Pol 73:27–34

    Google Scholar 

  • Uchman A, Bubniak I, Bubniak A (2000) The Glossifungites ichnofacies in the area of its nomenclatural archetype, Lviv, Ukraine. Ichnos 7:183–193

    Google Scholar 

  • Uchman A, Kazakauskas V, Gaigalas A (2009) Trace fossils from Late Pleistocene lacustrine varve sediments in eastern Lithuania. Palaeogeogr Palaeoclimatol Palaeoecol 272:199–211

    Google Scholar 

  • Uchman A, Pervesler P, Hohenegger J, Dominici S (2011) Ichnological record of environmental changes in Early Quaternary (Gelasian–Calabrian) marine sediments of the Stirone section, northern Italy. Palaios 26:578–593

    Google Scholar 

  • von Schlotheim F (1820) Die Petrefactenkunde auf ihrem jetzigen Standpunkte durch die Beschreibungseiner Sammlung versteinerter und fossiler Überreste des Thier- und Pflanzenreichs der Vorwelt. Becker, Gotha, LXII + 438 pp, 15 pl

  • Weiss W (1941) Die Entstehung der “Zöpfe” im Schwarzen und Braunen Jura. Natur Und Volk 71:179–184

    Google Scholar 

  • Wetzel A (2010) Deep-sea ichnology: observations in modern sediments to interpret fossil counterparts. Acta Geol Polonica 60:125–138

    Google Scholar 

  • Wetzel A, Bromley RG (1994) Phycosiphon incertum revisited: Anconichnus horizontalis is its junior subjective synonym. J Paleontol 68:1396–1402

    Google Scholar 

  • Worsley D, Mørk A (2001) The environmental significance of the trace fossil Rhizocorallium jenense in the Lower Triassic of western Spitsbergen. Polar Res 20:37–48

    Google Scholar 

  • Yanin BT, Baraboshkin EY (2013) Thalassinoides burrows (Decapoda dwelling structures) in Lower Cretaceous sections of southwestern and central Crimea. Stratigr Geol Correl 21:280–290

    Google Scholar 

  • Zenker JC (1836) Historisch-topographisches Taschenbuch von Jena und seiner Umgebung besonders in naturwissenschaftlicher und medizinischer Beziehung. Wackenhoder, Jena, 338 pp

  • Zhao Z, Ry F, Zhang LJ, Rodríguez-Tovar FJ, Gong Y-M (2020) Behavioural responses of Rhizocorallium to storm events: Evidence from the Middle Triassic of SW China. Palaeogeogr Palaeoclimatol Palaeoecol. https://doi.org/10.1016/j.palaeo.2020.109640

    Article  Google Scholar 

Download references

Acknowledgements

We are particularly grateful to Dr. Hechmi Garnit for assistance in the field work and the elaboration of this work. We thank Diana Elizabeth Fernández (Buenos Aires) and Matias Reolid (Jaén) for constructive reviews.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sami Riahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riahi, S., Uchman, A. Ichnology of Lower Cretaceous prodelta and delta front deposits of the Sidi Khalif Formation, Central Tunisia. Facies 68, 4 (2022). https://doi.org/10.1007/s10347-021-00642-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-021-00642-z

Keywords

Navigation