Skip to main content
Log in

Larger foraminifera and strontium isotope stratigraphy of middle Campanian shallow-water lagoonal facies of the Pyrenean Basin (NE Spain)

  • Original Article
  • Published:
Facies Aims and scope Submit manuscript

Abstract

The Upper Cretaceous Terradets Limestone of the south Pyrenean Basin consists of two subunits, named the Lower Terradets and the Upper Terradets. In the Lower Terradets subunit, sedimentological features and fossil content permit distinguishing mid-ramp, bioclastic shoal and inner-ramp lagoonal facies associations, each characterized by a distinctive larger foraminiferal assemblage. Mid-ramp facies contain epibenthic, relatively small foraminifera like Cuneolina cylindrica, Dictyopsella cf. cuvillieri, Pseudocyclammina sphaeroidea, Nummofallotia cretacea, Fallotia? sp., Pararotalia cf. tuberculifera, Praestorrsella roestae and Praesiderolites praevidali. Bioclastic shoal facies are dominated by Orbitoides cf. tissoti, Praesiderolites douvillei, and Pseudosiderolites sp. The inner-ramp lagoonal facies contain a rich and diverse assemblage of epiphytes, like Ilerdorbis decussatus, Dicyclina schlumbergeri, and Cyclopsinella roselli n. sp., and epibenthic foraminifera, like Calveziconus lecalvezae and Orbitokathina campaniana. Strontium isotope stratigraphy indicates a middle Campanian age for the Lower Terradets limestone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

The picture was taken on C-13 highway looking to the north

Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Al-Aasm IS, Veizer J (1986) Diagenetic stabilization of aragonite and low-Mg calcite. I. Trace elements in rudists. J Sediment Petrol 56:763–770

    Article  Google Scholar 

  • Albrich S, Frijia G, Parente M, Caus E (2014) The evolution of the earliest representatives of the genus Orbitoides: implications for Upper Cretaceous biostratigraphy. Cretac Res 51:22–34

    Article  Google Scholar 

  • Albrich S, Boix C, Caus E (2015) Selected agglutinated larger foraminifera from the Font de les Bagasses unit (lower Campanian, southern Pyrenees). Carnets Geol 15(18):245–267

    Article  Google Scholar 

  • Anthonissen DE, Ogg JG (2012) Appendix 3 Cenozoic and Cretaceous biochronology of planktonic foraminifera and calcareous nannofossils. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale. Elsevier, Amsterdam, pp 1083–1124

    Chapter  Google Scholar 

  • Bilotte M (1984) Le Crétacé Supérieur des plates-formes est-pyrénéenes. Strata Toulouse 1:1–45

    Google Scholar 

  • Boix C, Villalonga R, Caus E, Hottinger L (2009) Late Cretaceous rotaliids (Foraminiferida) from the Western Tethys. Neues Jahrbuch für Geologie und Palӓontologie 253(2–3):197–227

    Article  Google Scholar 

  • Boix C, Frijia G, Vicedo V, Bernaus JM, Di Lucia M, Parente M, Caus E (2011) Larger foraminifera distribution and strontium isotope stratigraphy of the La Cova Limestones (Coniacian-Santonian, Serra del Montsec, Pyrenees, NE Spain). Cretac Res 32:806–822

    Article  Google Scholar 

  • Brand U, Veizer J (1980) Chemical diagenesis of a multicomponent carbonate system: 1. Trace elements. J Sediment Petrol 50:1219–1236

    Google Scholar 

  • Brand U, Jiang G, Azmy K, Bishop J, Montanez IP (2012) Diagenetic evaluation of a Pennsylvanian carbonate succession (Bird Spring Formation, Arrow Canyon, Nevada, U.S.A.)-1: Brachiopod and whole rock comparison. Chem Geol 308–309:26–39

    Article  Google Scholar 

  • Capote R, Muñoz JA, Simón JL, Liesa CL, Arlegui LE (2002) Alpine tectonics I: the alpine system north of the Betic Cordillera. In: Gibbons W, Moreno T (eds) The geology of Spain. Geological Society, London, pp 367–400

    Chapter  Google Scholar 

  • Caus E (1981) Structural analysis of larger foraminifera in random section as an instrument for rapid determination of rock age and environment. In: Martinell J (ed) International symposium on concept and method in palaeontology. Departament de Paleontologia, Universitat de Barcelona, Barcelona, pp 223–232

    Google Scholar 

  • Caus E, Cornella A (1981a) La estructura de Montsechiana montsechiensis n. sp. foraminífero del Cretácico superior sudpirenaico. Rev Esp Micropaleontol 13(2):201–212

    Google Scholar 

  • Caus E, Cornella A (1981b) Calveziconus lecalvezae n. gen. n. sp. orbitolinidé campanien de la bordure méridionale des Pyrénèes. Cah Micropaléontol 4:27–34

    Google Scholar 

  • Caus E, Cornella A (1983) Macroforaminféres du Cretacé supérieur du bassin sud-pyrénéen. Géologie Meditérranéenne 10(3–4):137–142

    Article  Google Scholar 

  • Caus E, Gomez-Garrido A (1989) Upper Cretaceous biostratigraphy of the South Central Pyrenees (Lleida, Spain). Geodin Acta 3(3):221–228

    Article  Google Scholar 

  • Caus E, Rodés D, Solé-Sugrañes L (1988) Biostratigrafía y estructura del Cretácico superior de la Vall d’Alinyà (Pirineo oriental, prov. de Lleida). Acta Geológica Hispánica 23(2):107–118

    Google Scholar 

  • Caus E, Parente M, Vicedo V, Frijia G, Martinez R (2013) Broeckina gassoensis sp. nov., a larger foraminiferal index fossil for the middle Coniacian shallow-water deposits of the Pyrenean Basin (NE Spain). Cretac Res 45:76–90

    Article  Google Scholar 

  • Caus E, Frijia G, Parente M, Robles-Salcedo R, Villalonga R (2016) Constraining the age of the last marine sediments in the late Cretaceous of central south Pyrenees (NE Spain): Insights from larger benthic foraminifera and strontium isotope stratigraphy. Cretac Res 57:402–413

    Article  Google Scholar 

  • Consorti L, Frijia G, Caus E (2017a) Rotaloidean foraminifera from the Late Cretaceous carbonates of Central and Southern Italy. Cretac Res 70:226–243

    Article  Google Scholar 

  • Consorti L, Villalonga R, Caus E (2017b) New rotaliids (Benthic Foraminifera) from the late Cretaceous of the Pyrenees in Northeastern Spain. J Foramin Res 47(3):284–293

    Article  Google Scholar 

  • Cvetko-Tešovic B, Gušić I, Jelaska V, Bucković D (2001) Stratigraphy and microfacies of the Upper Cretaceous Pučišća Formation, Island of Brač, Croatia. Cretac Res 22:591–613

    Article  Google Scholar 

  • Dercourt J, Zonenshain LP, Ricou LE, Kazmin VG, Le Pichon X, Knipper AL, Grandjacquet C, Sborshchikov JM, Boulin J, Sorokhtin O, Geyssant J, Lepvrier C, Biju Duval B, Sibuet JC, Savostin LA, Westphal M, Lauer JP (1985) Présentation de 9 cartes paléogeographiques au 1/20000000, s’étendant de l’Atlantique au Pamir pour la période du Lias á. l’Actuel. Bulletin de la Société Géologique de France 8(1):637–652

    Google Scholar 

  • Frijia G, Parente M (2008a) Strontium isotope stratigraphy in the upper Cenomanian shallow-water carbonates of the southern Apennines: short-term perturbations of marine 87Sr/86Sr during. Palaeogeogr Palaeoclimatol Palaeoecol 261:15–29

    Article  Google Scholar 

  • Frijia G, Parente M (2008b) Reticulinella kaeveri Cherchi, Radoičić and Schroeder: a marker for the middle upper Turonian in the shallow-water carbonate facies of the peri-adriatic area. Bollettino della Società Geologica Italiana 127:275–284

    Google Scholar 

  • Frijia G, Parente M, Di Lucia M, Mutti M (2015) Carbon and strontium isotope stratigraphy of the Upper Cretaceous (Cenomanian-Campanian) shallow-water carbonates of southern Italy: chronostratigraphic calibration of larger foraminifera biostratigraphy. Cretac Res 53:110–139

    Article  Google Scholar 

  • Gendrot C (1968) Stratigraphie et Micropaléontologie du Sénonien de la région des Martigues près Marseille (Bouches- du- Rhône). Eclogae Geol Helv 61(2):657–694

    Google Scholar 

  • Gradstein FM, Ogg JG, Schmitz M, Ogg G (2012) The geologic time scale. Elsevier, Amsterdam, pp 1–1144

    Book  Google Scholar 

  • Hallock P (1998) Diversification in algal symbiont-bearing Foraminifera: a response to oligotrophy? Revue de Paléobiologie Benthos 86(special 2):789–797

    Google Scholar 

  • Hallock P, Glenn C (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1:55–64

    Article  Google Scholar 

  • Haq BU (2014) Cretaceous eustasy revisited. Global Planet Change 113:44–58

    Article  Google Scholar 

  • Hohenegger J (2005) Estimation of environmental paleogradient values based on presence/absence data: a case study using benthic foraminifera for paleodepth estimation. Palaeogeogr Palaeoclimatol Palaeoecol 217(1–2):115–130

    Article  Google Scholar 

  • Hohenegger J (2009) Functional shell geometry of symbiont-bearing benthic Foraminifera: Galaxea. J Coral Reef Stud 11:81–89

    Article  Google Scholar 

  • Hohenegger J (2011) Large foraminifera: greenhouse constructions and gardeners in the oceanic microcosm. The Kagoshima University Museum, Kagoshima, pp 1–85

    Google Scholar 

  • Hottinger L (1966) Foraminifères rotaliformes et Orbitoides du Sénonien inférieur pyrénéen. Eclogae Geol Helv 59:277–301

    Google Scholar 

  • Hottinger L (1978) Comparative anatomy of elementary shell structures in selected larger Foraminifera. In: Hedley RH, Adams CG (eds) Foraminifera. Academic Press, London, pp 203–266

    Google Scholar 

  • Hottinger L (1982) Larger foraminifera, giant cells with a historical background. Naturwissenschaften 69(8):361–371

    Article  Google Scholar 

  • Hottinger L (1983) Processes determining the distribution of larger foraminifera in space and time. Utrecht Micropaleontol Bull 30:239–253

    Google Scholar 

  • Hottinger L (1997) Shallow benthic foraminiferal assemblages as signals for depth of their deposition and their limitations. Bulletin Société géologique de France 168(4):491–505

    Google Scholar 

  • Hottinger L (2000) Functional morphology of benthic foraminiferal shells, envelops of cells beyond measure. Micropaleontology 46(1):57–86

    Google Scholar 

  • Hottinger L (2006) Illustrated glossary of terms used in foraminiferal research. Carnets de Géologie M02 (CG2006_M02):1–125

    Google Scholar 

  • Hottinger L (2014) Paleogene larger rotaliid foraminifera from the western and central Neotethys. Springer, Berlin, pp 3–191

    Google Scholar 

  • Hottinger L, Caus E (1982) Marginoporiform structure in Ilerdorbis decussatus n.gen. n. sp., a Senonian, agglutinated, discoidal foraminifer. Eclogae Geol Helv 75(3):807–819

    Google Scholar 

  • Hottinger L, Rosell J (1973) El Cretácico superior del Montsec. XIII coloquio europeo de micropaleontología. ENADIMSA, Madrid, pp 73–85

    Google Scholar 

  • Kaminski MA (2004) The year 2000 classification of the agglutinated Foraminifera. In: Bubik M, Kaminski MA (eds) Proceedings of the 5th international workshop on agglutinated foraminifera, vol 8. Grzybowski Foundation Special Publication, Kraków, pp 237–255

    Google Scholar 

  • Kaminski MA (2014) The year 2010 classification of the agglutinated foraminifera. Micropaleontology 60(1):89–108

    Google Scholar 

  • Kump LR, Bralower TJ, Ridgwell A (2009) Ocean acidification in deep time. Oceanography 22:94–107

    Article  Google Scholar 

  • Leutenegger S (1984) Symbiosis in benthic foraminifera: specificity and host Adaptations. J Foraminifer Res 14(1):16–35

    Article  Google Scholar 

  • Liebau A (1980) Paläobathymetrie und Ökofactorem: flachmeerzonierengun. Neues Jahrbuch Geologische Paläontologie Abhandlungen 160:173–216

    Google Scholar 

  • Loeblich AR, Tappan H (1964) Sarcodina, chiefly “Thecamoebians” and Foraminiferida. In: Moore RC (ed) Treatise on invertebrate paleontology, Part C, Protist 2. Univ Kansas Press, Lawrence, pp 1–900

    Google Scholar 

  • Loeblich AR, Tappan H (1988) Foraminiferal genera and their classification. Van Nostrand Reinhold, New York, pp 3–970

    Book  Google Scholar 

  • Luterbacher HP (1984) Paleoecology of foraminifera in the Paleogene of the Southern Pyrenees. In: Benthos: 2nd international symposium on Benthic Foraminifera, Pau, pp 389–392

  • McArthur JM (1994) Recent trends in strontium isotope stratigraphy. Terra Nova 6:331–358

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Bailey TR (2001) Strontium isotope stratigraphy: lowess version 3. Best fit to the marine Sr-isotope curve for 0 to 509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Article  Google Scholar 

  • McArthur JM, Howarth RJ, Shields GA (2012) Strontium isotope stratigraphy. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale. Elsevier, Amsterdam, pp 127–144

    Chapter  Google Scholar 

  • Moro A, Horvat A, Tomić V, Sremac J, Bermanec V (2016) Facies development and paleoecology of rudists and corals: an example of Campanian transgressive sediments from northern Croatia, northeastern Slovenia, and northwestern Bosnia. Facies 62(19):1–25

    Google Scholar 

  • Munier-Chalmas M (1887) Sur la Cyclolina et trois nouveaux genres de foraminifères de couches à Rudistes: cyclopsina, Dicyclina et Spirocyclina. Bulletin de la Société Géologique de France 4(7):30–31

    Google Scholar 

  • Muñoz JA (2002) The Pyrenees. In: Moreno T, Gibbon W (eds) Geology of Spain. Geological Society, London, pp 370–385

    Google Scholar 

  • Muñoz JA, Martínez A, Vergés SJ (1986) Thrust sequences in the eastern Spanish Pyrenees. J Struct Geol 8(3–4):399–405

    Article  Google Scholar 

  • O’Brien CL, Robinson SA, Pancost RD, Sinninghe Damsté JS, Schouten S, Lunt DJ (2017) Cretaceous sea-surface temperature evolution: constraints from TEX 86 and planktonic foraminiferal oxygen isotopes. Earth Sci Rev 172:224–247

    Article  Google Scholar 

  • Ogg JG, Hinnov LA (2012) Cretaceous. In: Gradstein FM, Ogg JG, Schmitz M, Ogg G (eds) The geologic time scale. Elsevier, Amsterdam, pp 793–854

    Chapter  Google Scholar 

  • Pascual O, Pons JM, Vicens E (1989) Rudists horizons in the Montsec (South Central Pyrenees). In: Wiedman J (ed) Cretaceous of the western Tethys. Proceedings 3rd international Cretaceous symposium, Tübingen, pp 215–230

  • Pawlowski J, Holzman M, Tyszka J (2013) New supraordinal classification of Foraminifera: molecules meet morphology. Mar Micropaleontol 100:1–10

    Article  Google Scholar 

  • Pérès JM (1961) Océanographie biologique et biologie marine. I. La vie benthique. Presses Univ France, Paris, pp 1–541

    Google Scholar 

  • Petrizzo MR, Falzoni F, Silva IP (2011) Identification of the base of the lower-to-middle Campanian Globotruncana ventricosa Zone: comments on reliability and global correlations. Cretac Res 32(3):387–405

    Article  Google Scholar 

  • Pons JM (1977) Estudio estratigráfico y paleontológico de los yacimientos de Rudistas del Cretácico Superior del Prepirineo de la provincia de Lérida. Publicaciones de Geología. Universidad Autònoma de Barcelona 3:1–105

    Google Scholar 

  • Robles-Salcedo R (2014) La familia siderolitidae (macroforaminíferos del Cretácico superior): Arquitectura de la concha, Biostratigrafía, Distribución paleoambiental y Paleobiogeografía. Ph.D. Thesis. Universitat Autònoma de Barcelona, pp 1–183

  • Robles-Salcedo R, Rivas G, Vicedo V, Caus E (2013) Paleoenvironmental distribution of larger foraminifera in Upper Cretaceous siliciclastic-carbonate deposits (Arén Sandstone Formation, south Pyrenees, northeastern Spain). Palaios 28:637–648

    Article  Google Scholar 

  • Romero J, Caus E, Rosell J (2002) Model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 179:43–56

    Article  Google Scholar 

  • Schlumberger C, Choffat P (1904) Note sur le genre Spirocyclina Munier-Chalmas et quelques autres genres de même auteur. Bulletin de la Société Géologique de France 2(4):358–368

    Google Scholar 

  • Séguret M (1972) Étude tectonique des nappes et séries décollés de la partie centrale du versant sud des Pyrenees. Caractère synsédimentaire, rôle de la compression et de la gravité. Ph.D. Thesis. Université des Sciences et Techniques de Montpellier, Publ. Ustela, sér Géol. Struct. 2, pp 1–155

  • Septfontaine M (1988) Towards an evolutionary classification of Jurassic lituolids (Foraminifera) in carbonate platform environment. Revue de Paléobiologie Special 2:229–256

    Google Scholar 

  • Simó A (1986) Carbonate platform depositional sequences, Upper Cretaceous, south-central Pyrenees (Spain). Tectonophysics 129:205–231

    Article  Google Scholar 

  • Simó A (1993) Cretaceous carbonate platforms and stratigraphic sequences, South-Central Pyrenees, Spain. In: Simó JA, Scott RW, Masse JP (eds) Cretaceous carbonate platforms. AAPG, Memoir, pp 325–342

    Google Scholar 

  • Souquet P (1967) Le Crétacé supérieur sud-pyrénéen en Catalogne, Aragon et Navarre. Ph.D. Thesis. Publicacion Laboratoire Géologique de l’Université de Toulouse, Toulouse, pp 1–529

  • Steuber T (2003) Strontium isotope chemostratigraphy of rudist bivalves and Cretaceous carbonate platforms. In: Gili E, Negra MH, Skelton PW (eds) North African Cretaceous carbonate platform systems. NATO Science Series, IV, 28. Earth and environmental sciences, pp 229–238

  • Steuber T, Schluter M (2012) Strontium-isotope stratigraphy of Upper Cretaceous rudist bivalves: Biozones, evolutionary patterns and sea-level change calibrated to numerical ages. Earth Sci Rev 114(1–2):42–60

    Article  Google Scholar 

  • Steuber T, Korbar T, Jelaska V, Gusic I (2005) Strontium isotope stratigraphy of Upper Cretaceous platform carbonates of the island of Brac (Adriatic Sea, Croatia): implications for global correlation of platform evolution and biostratigraphy. Cretac Res 26:741–756

    Article  Google Scholar 

  • Ullmann CV, Korte C (2015) Diagenetic alteration in low-Mg calcite from macrofossils: a review. Geol Q 59(1):1–18

    Google Scholar 

  • Velić I (2007) Stratigraphy and palaeobiogeography of Mesozoic benthic foraminifera of the Karst Dinarides (SE Europe). Geol Croat 60:1–113

    Google Scholar 

Download references

Acknowledgements

We wish to express our sincere gratitude to Prof. Joan Rosell (Universitat Autònoma de Barcelona) for his help in the field work. The financial support of the Spanish Ministry of Economy and Competitiveness (Projects CGL2012-33160 and CGL2015-69805-P) is gratefully acknowledged and the Grup de Recerca Reconegut per la Generalitat de Catalunya 2017 SGR 824 “Geologia Sedimentaria”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Villalonga.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villalonga, R., Boix, C., Frijia, G. et al. Larger foraminifera and strontium isotope stratigraphy of middle Campanian shallow-water lagoonal facies of the Pyrenean Basin (NE Spain). Facies 65, 20 (2019). https://doi.org/10.1007/s10347-019-0565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10347-019-0565-4

Keywords

Navigation