Skip to main content
Log in

Yield Related Traits and Tolerance Indices to Screen Salinity Tolerant Genotypes in Cultivated and Wild Barley

Ertragsbezogene Merkmale und Toleranzindizes zum Screening salztoleranter Genotypen bei Kultur- und Wildgerste

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

Salinity is one of the major abiotic factors limiting crop production worldwide. To assess salinity stress tolerance of wild (Hordeum vulgare ssp. spontaneum L.) and cultivated (H. vulgare ssp. vulgare L.) barley genotypes, a two-year field experiment was carried out. Plant height, days to heading, days to anthesis, days to maturity, spike length, grain yield, and yield components were evaluated under normal and salinity stress conditions. The stress stability index (SSI), tolerance index (TOL), yield index (YI), stress tolerance index (STI), geometric mean productivity (GMP), mean productivity (MP), and yield stability index (YSI) were the tolerance indices used in this study. The results showed significant effects of salinity stress and genotype on the measured and calculated variables. The wild genotypes were less affected by salinity stress than the cultivated ones and thus were far superior for the stability indices for yield (STI and YSI). On the other hand, barley cultivars were superior for yield obtained under normal (Yp) and saline (Ys) conditions, MP, GMP, and TOL. A strong relationship was found between grain yield and three indices (STI, YI, and YSI). Ultimately, cluster and principal component analyses suggested that the implementation of STI and YSI in the screening of the wild genotypes for salinity tolerance results in a more robust determination of the most salinity tolerant genotypes.

Zusammenfassung

Der Salzgehalt ist einer der wichtigsten abiotischen Faktoren, die die Pflanzenproduktion weltweit einschränken. Um die Salinitätstoleranz von Wildgerste (Hordeum vulgare ssp. spontaneum L.) und Kulturgerste (H. vulgare ssp. vulgare L.) zu bewerten, wurde ein zweijähriger Feldversuch durchgeführt. Pflanzenhöhe, Tage bis zum Schossen, Tage bis zur Anthese, Tage bis zur Reife, Ährenlänge, Kornertrag und Ertragskomponenten wurden unter normalen und unter Salzstressbedingungen bewertet. Der Stressstabilitätsindex (SSI), der Toleranzindex (TOL), der Ertragsindex (YI), der Stresstoleranzindex (STI), die geometrische mittlere Produktivität (GMP), die mittlere Produktivität (MP) und der Ertragsstabilitätsindex (YSI) waren die in dieser Studie verwendeten Toleranzindizes. Die Ergebnisse zeigten signifikante Auswirkungen von Salinitätsstress und Genotyp auf die gemessenen und berechneten Variablen. Die wilden Genotypen wurden durch den Salzstress weniger beeinträchtigt als die kultivierten und waren daher bei den Stabilitätsindizes für den Ertrag (STI und YSI) weit überlegen. Andererseits waren die kultivierten Gerstensorten überlegen bzgl. der erzielten Erträge unter normalen (Yp) und salzigen (Ys) Bedingungen, MP, GMP und TOL. Es wurde ein enger Zusammenhang zwischen dem Kornertrag und drei Indizes (STI, YI und YSI) festgestellt. Cluster- und Hauptkomponentenanalysen ergaben schließlich, dass die Anwendung von STI und YSI beim Screening von Wildgenotypen auf Salztoleranz zu einer stabileren Bestimmung der salztolerantesten Genotypen führt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DA:

Number of days to anthesis

DH:

Number of days to heading

DM:

Number of days to maturity

GMP:

geometric mean productivity

GW:

1000-grain weight

MP:

mean productivity

NGS:

number of grains per spike

NT:

number of fertile tillers

PC:

principal component

PH:

plant height

SPL:

spike length

SSI:

stress stability index

STI:

stress tolerance index

TOL:

tolerance index

YI:

yield index

Yp:

yield obtained under normal conditions

Ys:

yield obtained under saline conditions

YSI:

yield stability index

References

  • Abdolshahi R, Nazari M, Safarian A, Sadathossini TS, Salarpour M, Amiri H (2015) Integrated selection criteria for drought tolerance in wheat (Triticum aestivum L.) breeding programs using discriminant analysis. Field Crop Res 174:20–29

    Article  Google Scholar 

  • Ahmed IM, Cao F, Zhang M, Chen X, Zhang G et al (2013) Difference in yield and physiological features in response to drought and salinity combined stress during anthesis in Tibetan wild and cultivated barleys. Plos One 8(10):e77869. https://doi.org/10.1371/journal.pone.0077869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arzani A, Ashraf M (2016) Smart engineering of genetic resources for enhanced salinity tolerance in crop plants. Crit Rev Plant Sci 35:146–189

    Article  CAS  Google Scholar 

  • Arzani A, Ashraf M (2017) Cultivated ancient wheats (Triticum spp.): a potential source of health beneficial food products. Compr Rev Food Sci Food Saf 16:477–488

    Article  PubMed  Google Scholar 

  • Bahrami F, Arzani A, Karimi V (2014) Evaluation of yield-based drought tolerance indices for screening safflower genotypes. Agron J 106:1219–1224

    Article  Google Scholar 

  • Bahrami F, Arzani A, Rahimmalek M (2019) Photosynthetic and yield performance of wild barley (Hordeum vulgare ssp. spontaneum) under terminal heat stress. Photosynthetica 57:9–17

    Article  CAS  Google Scholar 

  • Bahrami F, Arzani A, Rahimmalek M (2021) Tolerance to high-temperature at reproductive stage: trade-offs between phenology, grain yield and yield-related traits in wild and cultivated barleys. Plant Breed 140:812–826. https://doi.org/10.1111/pbr.12953

    Article  CAS  Google Scholar 

  • Barati M, Majidi MM, Safari M, Mostafavi F, Mirlohi A, Karami Z (2020) Comparative physiological attributes of cultivated and wild relatives of barley in response to different water environments. Agron J 112:36–43

    Article  Google Scholar 

  • Billah M, Aktar S, Brestic M, Zivcak M, Khaldun ABM, Uddin MS, Bagum SA, Yang X, Skalicky M, Mehari TG, Maitra S, Hossain A (2021) Progressive genomic approaches to explore drought- and salt-induced oxidative stress responses in plants under changing climate. Plants 10(9):1910. https://doi.org/10.3390/plants1009191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blum A (1988) Plant breeding for stress environments. CRC, Boca Raton

    Google Scholar 

  • Bouslama M, Schapaugh Jr. WT (1984) Stress tolerance in soybeans. I. Evaluation of three screening techniques for heat and drought tolerance. Crop Sci 24:933–937

    Article  Google Scholar 

  • Chen G, Komatsuda T, Pourkheirandish M, Sameri MM, Sato K, Krugman T, Nevo E (2009) Mapping of the eibi1 gene responsible for the drought hypersensitive cuticle in wild barley (Hordeum spontaneum). Breed Sci 59:21–26

    Article  CAS  Google Scholar 

  • Ebrahim F, Arzani A, Rahimmalek M (2018) Evaluation of genetic diversity in wild barley (Hordeum vulgare ssp. spontaneum) collected from west of Iran and some of their hybrids resulted from cross with cultivated barley. J Crop Prod Proc 8:1–12

    Google Scholar 

  • Ebrahim F, Arzani A, Rahimmalek M, Sun D, Peng J (2020) Salinity tolerance of wild barley Hordeum vulgare ssp. spontaneum. Plant Breed 139:304–326. https://doi.org/10.1111/pbr.12770

    Article  CAS  Google Scholar 

  • Fernandez GCJ (1992) Effective selection criteria for assessing plant stress tolerance. In: Kuo CG (ed) Proceedings of the international symposium on adaptation of vegetables and other food crops in temperature and water stress Asian. Vegetable Research and Development Center, Taiwan, pp 257–270 (Chapter 25)

    Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield response. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Gavuzzi P, Rizza F, Palumbo M, Campaline RG, Ricciardi GL, Borghi B (1997) Evaluation of field and laboratory predictors of drought and heat tolerance in winter cereals. Can J Plant Sci 77:523–531

    Article  Google Scholar 

  • Gharaghanipor N, Arzani A, Rahimmalek M, Ravash R (2022) Physiological and transcriptome indicators of salt tolerance in wild and cultivated barley. Front Plant Sci 13:819282. https://doi.org/10.3389/fpls.2022.819282

    Article  PubMed  PubMed Central  Google Scholar 

  • Golabadi M, Arzani A, Maibody SAM (2006) Assessment of drought tolerance in segregating populations in durum wheat. Afr J Agric Res 5:162–171

    Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genomics. https://doi.org/10.1155/2014/701596

    Article  PubMed  PubMed Central  Google Scholar 

  • Honsdorf N, March TJ, Berger B, Tester M, Pillen K (2014) High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines. PLoS ONE 9(5):e97047

    Article  PubMed  PubMed Central  Google Scholar 

  • Hussain S, Ulhassan Z, Brestic M et al (2021) Photosynthesis research under climate change. Photosynth Res 150:5–19. https://doi.org/10.1007/s11120-021-00861-z

    Article  CAS  PubMed  Google Scholar 

  • Jana S, Pietrzak LN (1988) Comparative assessment of genetic diversity in wild and primitive cultivated barley in a center of diversity. Genetics 119:981–990. https://doi.org/10.1093/genetics/119.4.981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaradat AA (1991) Grain protein variability among populations of wild barley (Hordeum spontaneum C. Koch.) from Jordan. Theor Appl Genet 83:164–168

    Article  CAS  PubMed  Google Scholar 

  • Jedmowski C, Ashoub A, Momtaz O, Brüggemann W (2015) Impact of drought, heat, and their combination on chlorophyll fluorescence and yield of wild barley (Hordeum spontaneum). J Bot 9:120868. https://doi.org/10.1155/2015/120868

    Article  CAS  Google Scholar 

  • Johnson RA, Wichern DW (2007) Applied multivariate statistical analysis, 6th edn. Pearson Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Ma XY, Li C, Wang A, Duan R, Jiao G, Nevo E, Chen GX (2012) Genetic diversity of wild barley (Hordeum vulgare ssp. spontaneum) and its utilization for barley improvement. Sci Cold Arid Reg 4:453–461

    Google Scholar 

  • Morrell PL, Clegg MT (2007) Genetic evidence for a second domestication of barley (Hordeum vulgare) east of the Fertile Crescent. Proc Natl Acad Sci USA 104:3289–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33(4):670–685. https://doi.org/10.1111/j.1365-3040.2009.02107.x

    Article  CAS  PubMed  Google Scholar 

  • Pour-Aboughadareh A, Ahmadi J, Mehrabi AA, Etminan A, Moghaddam M, Siddique KHM (2017) Physiological responses to drought stress in wild relatives of wheat: implications for wheat improvement. Acta Physiol Plant 39(4):106. https://doi.org/10.1007/s11738-017-2403-z

    Article  CAS  Google Scholar 

  • Qiu L, Wu DZ, Ali S, Cai SG, Dai F, Jin X et al (2011) Evaluation of salinity tolerance and analysis of allelic function of HvHKT1 and HvHKT2 in Tibetan wild barley. Theor Appl Genet 122:695–703

    Article  CAS  PubMed  Google Scholar 

  • Rampino P, Gulli M, Pascali MD, Caroli MD, Marmiroli N, Perrotta C (2018) Wild and cultivated Triticum species differ in thermo tolerant habit and HSP gene expression. Plant Biosyst 153:337–343

    Article  Google Scholar 

  • Rasel M, Tahjib-Ul-Arif M, Hossain MA et al (2021) Screening of salt-tolerant rice landraces by seedling stage phenotyping and dissecting biochemical determinants of tolerance mechanism. J Plant Growth Regul 40:1853–1868. https://doi.org/10.1007/s00344-020-10235-9

    Article  CAS  Google Scholar 

  • Rosielle AA, Hamblin J (1981) Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci 21:943–946. https://doi.org/10.2135/cropsci1981.0011183X002100060033x

    Article  Google Scholar 

  • Saade S, Maurer A, Shahid M et al (2016) Yield-related salinity tolerance traits identified in a nested association mapping (NAM) population of wild barley. Sci Rep 6:32586. https://doi.org/10.1038/srep32586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sayed MA, Tarawneh R, Youssef HM, Pillen K, Börner A (2021) Detection and verification of QTL for salinity tolerance at germination and seedling stages using wild barley introgression lines. Plants 10(11):2246. https://doi.org/10.3390/plants10112246

    Article  PubMed  PubMed Central  Google Scholar 

  • Shabala S (2013) Learning from halophytes: physiological basis and strategies to improve abiotic stress tolerance in crops. Ann Bot 112:1209–1221

    Article  PubMed  PubMed Central  Google Scholar 

  • Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ, Tester M, Langridge P, Collins NC (2010) HvNax3—a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp. spontaneum). Funct Integr Genomics 10:277–291

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Chen Z‑H, Yang C, Zhang X, Jin G, Chen G, Dai F (2018) Genomic adaptation to drought in wild barley is driven by edaphic natural selection at the Tabigha evolution slope. Proc Natl Acad Sci USA 115(20):5223–5228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu DZ, Qiu L, Xu LL, Ye LZ, Chen M, Sun D et al (2011) Genetic variation of HvCBF genes and their association with salinity tolerance in Tibetan annual wild barley. PLoS One 6:e22938. https://doi.org/10.1371/journal.pone.0022938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu M, Zhou MX, Shabala L, Shabala S (2015) Linking osmotic adjustment and stomatal characteristics with salinity stress tolerance in contrasting barley accessions. Funct Plant Biol 42:252–263

    Article  CAS  PubMed  Google Scholar 

  • Zohary D, Hopf M, Weiss E (2012) Domestication of plants in the old world: the origin and spread of domesticated plants in Southwest Asia, Europe, and the Mediterranean Basin, 4th edn. Oxford University Press, Oxford, pp 51–59

    Book  Google Scholar 

Download references

Funding

This work was supported by grants from the Ministry of Science Research and Technology, Iran National Science Foundation (INSF grant number 96002328). This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

AA and KC collected the seeds and contributed significantly to the study design. The experiment was carried out by FE and SR with the supervision of AA and MR. The data were analyzed by FE, who also wrote the paper, with significant inputs from AA, MR and KC. All authors read and approved the final manuscript.

Corresponding author

Correspondence to A. Arzani.

Ethics declarations

Conflict of interest

F. Ebrahim, A. Arzani, M. Rahimmalek, S. Rezaei and K. Cheghamirza declare that they have no competing interests.

Additional information

Availability of data and materials

Data necessary to reproduce the primary results of this study are included in the Article and its Supplementary Information.

Supplementary Information

1. Supplementary Fig. 1: Description of the collecting sites used in this study.

10343_2022_692_MOESM2_ESM.pdf

2. Supplementary Tables: Description of the barley genotypes (wild and cultivated: Supplementary Tables 1 and 2, respectively) used in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahim, F., Arzani, A., Rahimmalek, M. et al. Yield Related Traits and Tolerance Indices to Screen Salinity Tolerant Genotypes in Cultivated and Wild Barley. Gesunde Pflanzen 74, 1099–1108 (2022). https://doi.org/10.1007/s10343-022-00692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-022-00692-5

Keywords

Schlüsselwörter

Navigation