Skip to main content

Advertisement

Log in

Morphological and genetic variation of Melolontha spp. from pine stands with different composition and proportion of admixed tree species

  • Original Paper
  • Published:
European Journal of Forest Research Aims and scope Submit manuscript

Abstract

Increasing areas of gradation, making it difficult or impossible to perform restorations and forestations, and as causing tree crown damage, result in the need to intensify monitoring of beetle populations. In order to support control activities, the study assessed the species structure, morphological traits and genetic variation in Melolontha spp. from five pine stands with different composition and proportion of admixed tree species. The study applied ISSR and COI methods and identified minor variabilities between the analyzed populations, which may be the effect of high gene flow and absence of complete geographic isolation. Our research indicated high population dynamics and the degree of its migration, as evidenced by the gene flow rate. Given the rapid spreading potential, current methods of countering pest expansion are rather ineffective. The species, morphological and genetic structures were found to be associated with the area of beetles’ occurrence, which may depend on the proportion and composition of admixed tree species, which beetles use for supplementary and reference feeding. This species showed higher values of the genetic variation parameter in areas dominated by M. hippocastani compared to M. melolontha. However, the opposite situation was observed in the area with M. melolontha dominance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alberts C, Ribeiro-Paes J, Aranda-Selverio G et al (2010) DNA extraction from hair shafts of wild Brazilian felids and canids. Genet Mol Res 9:2429–2435. https://doi.org/10.4238/vol9-4gmr1027

    Article  CAS  PubMed  Google Scholar 

  • Ballesta P, Mora F, Contreras-Soto R et al (2015) Analysis of the genetic diversity of Eucalyptus cladocalyx (sugar gum) using ISSR markers. Acta Sci Agron 37:133–140. https://doi.org/10.4025/actasciagron.v37i2.19307

    Article  CAS  Google Scholar 

  • Baumann R, Schubert R, Heitland W et al (2003) Genetic diversity within and among populations of Diprion pini (Hym., Diprionidae) determined by random amplified polymorphic DNA-polymerase chain reaction of haploid males. J Appl Entomol 127:258–264. https://doi.org/10.1046/j.1439-0418.2003.00735.x

    Article  CAS  Google Scholar 

  • Bergmann F, Gregorius HR (1979) Comparison of the genetic diversities of various poplations of Norway spruce (Picea abies). In: Proceedings biochemical genetics of forest trees, pp 99–107.

  • Berry A, Kreitman M (1993) Molecular analysis of an allozyme cline: alcohol dehydrogenase in drosophila melanogaster on the East Coast of North America. Genetics 134:869

    Article  CAS  Google Scholar 

  • Brown AHD, Weir BS (1983) Measuring genetic variability in plant populations. In: Proceedings developments in plant genetics and breeding. Elsevier, pp 219–239.

  • Bulmer MG (1977) Periodical insects. Am Nat 111:1099–1117

    Article  Google Scholar 

  • Burban C, Gautier M, Leblois R et al (2016) Evidence for low-level hybridization between two allochronic populations of the pine processionary moth, Thaumetopoea pityocampa (Lepidoptera: Notodontidae). Biol J Linn Soc 119:311–328. https://doi.org/10.1111/BIJ.12829

    Article  Google Scholar 

  • Burns JM, Janzen DH, Hajibabaei M et al (2008) DNA barcodes and cryptic species of skipper butterflies in the genus Perichares in Area de conservación guanacaste, Costa Rica. Proc Natl Acad Sci U S A 105:6350–6355. https://doi.org/10.1073/pnas.0712181105

    Article  PubMed  PubMed Central  Google Scholar 

  • Celinski K, Zbrankova V (2010) Application of ISSR markers to estimate genetic diversity of conifers

  • Christiansen K (1986) The infuence of cockchafers on the development of growth rings in oak trees. In: Proceedings international symposium on ecological aspects of tree-ring analysis, pp 142–154.

  • Cox K, Thomaes A, Antonini G et al (2013) Testing the performance of a fragment of the COI gene to identify western Palaearctic stag beetle species (Coleoptera, Lucanidae). Zookeys 365:105–126. https://doi.org/10.3897/zookeys.365.5526

    Article  Google Scholar 

  • Ding S, Wang S, He K et al (2017) (2017) Large-scale analysis reveals that the genome features of simple sequence repeats are generally conserved at the family level in insects. BMC Genomics 181(18):1–10. https://doi.org/10.1186/S12864-017-4234-0

    Article  Google Scholar 

  • Djebbi S, Ben AW, Bouktila D et al (2018) Assessment of Pea Weevil Bruchus pisorum (Coleoptera: Bruchidae) genetic diversity based on mitochondrial COI gene sequences. African Entomol 26:95–103. https://doi.org/10.4001/003.026.0095

    Article  Google Scholar 

  • Drozdowski S, Jankowski P, Byk A (2013) Classification model for prediction of mass damage in young forest plantations caused by larvae of cockchafer (Melolontha). Sylwan 157:678–685

    Google Scholar 

  • Endler JA (1977) Geographic variation. Princeton University Press, Princeton, Speciation and Clines

    Google Scholar 

  • Enkerli J, Gisler A, KÖlliker R, Widmer F (2008) Development of 16 microsatellite markers for the European cockchafer, melolontha melolontha. Mol Ecol Resour 8:158–160. https://doi.org/10.1111/j.1471-8286.2007.01909.x

    Article  CAS  PubMed  Google Scholar 

  • European Parliament (2009) directive 2009/128/EC of the european parliament and the council of 21 October 2009 establishing a framework for community action to achieve the sustainable use of pesticides. October 309:71–86

  • Evans MEG (1990) Habits or habitats: Do carabid locomotor adaptations refect habitats or lifestiles? In: Stork NE (ed) The role of ground beetles in ecological and environmental studies. Intercept, Newcastle, pp 295–305

    Google Scholar 

  • Freeland J (2008) Molecular ecology. Wydawnictwo Naukowe PWN, Warszawa

    Google Scholar 

  • Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925. https://doi.org/10.1093/genetics/147.2.915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giannoulis T, Dutrillaux AM, Mamuris Z et al (2011) Evolution of European cockchafers (Melolonthinae: Scarabaeidae: Coleoptera): a morphological, molecular and chromosomal study of intra- and inter-specific variations. Bull Entomol Res 101:345–352. https://doi.org/10.1017/S0007485310000568

    Article  CAS  PubMed  Google Scholar 

  • Głowacka B, Sierpińska A (2012) Control of adult cockchafers Melolontha spp. with Mospilan 20 SP

  • Hartl DL, Clark AG (2007) Principles of population genetics1 relevance of population genetics 4 1.2 phenotypic variation in natural populations 5, 4th edn, Sinauer Associates Inc. Publishers: Sunderland, MA.

  • Huiting, HF, Moraal, LG, Griepink, FC, & Ester, A (2006), Biology, control and luring of the cockchafer, Melolontha melolontha: literature report on biology, life cycle and pest incidence, current control possibilities and pheromones. PPO.

  • Hui-yu L, Jing J, Gui-feng L et al (2005) Genetic variation and division of Pinus sylvestris provenances by ISSR markers. J for Res 16:216–218. https://doi.org/10.1007/BF02856818

    Article  Google Scholar 

  • Ibrahim KM, Yassin Y, Elguzouli A (2004) Polymerase chain reaction primers for polymorphic microsatellite loci in the African armyworm, Spodoptera exempta (Lepidoptera: Noctuidae). Mol Ecol Notes 4:653–655. https://doi.org/10.1111/J.1471-8286.2004.00772.X

    Article  CAS  Google Scholar 

  • Imrei Z, Tóth M (2002) European common cockchafer (Melolontha melolontha L.): preliminary results of attraction to green leaf odours. Acta Zool Acad Sci Hungaricae 48:151–155

    Google Scholar 

  • Jabłoński T (2020) Short-term forecast of the occurrence of major pests and infectious diseases in Poland in 2020. Sękocin Stary

  • Jordal BH, Kambestad M (2014) DNA barcoding of bark and ambrosia beetles reveals excessive NUMTs and consistent east-west divergence across Palearctic forests. Mol Ecol Resour 14:7–17. https://doi.org/10.1111/1755-0998.12150

    Article  CAS  PubMed  Google Scholar 

  • Keller S, Schweizer C, Shah P (1999) Differential susceptibility of two Melolontha populations to infections by the fungus Beauveria brongniartii. Biocontrol Sci Technol 9:441–446. https://doi.org/10.1080/09583159929703

    Article  Google Scholar 

  • Keller S, Zimmermann G (2005) Scarabs and other soil pests in Europe: Situation, perspectives and control strategies. In: Proceedings insect pathogens and insect parasitic nematodes: Melolontha IOBC/wprs Bulletin, pp 9–12

  • Landvik M, Miraldo A, Niemelä P et al (2017) Evidence for geographic substructuring of mtDNA variation in the East European Hermit beetle (Osmoderma barnabita). Nat Conserv 19:171–189. https://doi.org/10.3897/natureconservation.19.12877

    Article  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187

    Article  CAS  PubMed  Google Scholar 

  • López-Aljorna A, Bueno MÁ, Aguinagalde I, Martín JP (2007) Fingerprinting and genetic variability in cork oak (Quercus suber L.) elite trees using ISSR and SSR markers. Ann for Sci 64:773–779. https://doi.org/10.1051/FOREST:2007057

    Article  Google Scholar 

  • Luque C, Legal L, Staudter H et al (2002) ISSR (inter simple sequence repeats) as genetic markers in Noctuids (Lepidoptera). Hereditas 136:251–253. https://doi.org/10.1034/j.1601-5223.2002.1360312.x

    Article  CAS  PubMed  Google Scholar 

  • Masternak K, Banach J, Głębocka K, Wajdzik M (2018) Genetic variability in pitch pine (Pinus rigida Mill.) growing in the Niepołomice forest as determined by ISSR markers. Acta Societatis Botanicorum Poloniae. https://doi.org/10.5586/asbp.3593

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. https://doi.org/10.1086/282771

    Article  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press

    Book  Google Scholar 

  • Nei M, Roychoudhury AK (1975) Sampling variances of heterozygosity and genetic distance. Genetics 80:223–226

    Article  Google Scholar 

  • Niemczyk M (2015) Risk of the mass occurrence of cockchafer (Melolontha spp.) grubs in the ecotone of mature stands in Lubaczow Forest District. Sylwan 159:326–335

    Google Scholar 

  • Niemczyk M, Karwański M, Grzybowska U (2017) Effect of environmental factors on occurrence of cockchafers. Balt for 23:334–341

    Google Scholar 

  • Oakeshott JG, Gibson JB, Anderson PR et al (1982) Alcohol dehydrogenase and glycerol-3-phosphate dehydrogenase clines in drosophila melanogaster on different continents. Evolution (N Y) 36:86–96. https://doi.org/10.1111/J.1558-5646.1982.TB05013.X

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. population genetic software for teaching and research–an update. Bioinformatics 28:2537–2539. https://doi.org/10.1093/bioinformatics/bts460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Platnick NI, Manton SM (1978) The arthropoda: habits, functional morphology, and evolution. Oxford Academic

    Google Scholar 

  • Pons J, Ribera I, Bertranpetit J, Balke M (2010) Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Mol Phylogenet Evol 56:796–807. https://doi.org/10.1016/j.ympev.2010.02.007

    Article  CAS  PubMed  Google Scholar 

  • Printzen C, Ekman S, Tønsberg T (2003) Phylogeography of Cavernularia hultenii: evidence of slow genetic drift in a widely disjunct lichen. Mol Ecol 12:1473–1486. https://doi.org/10.1046/j.1365-294X.2003.01812.x

    Article  CAS  PubMed  Google Scholar 

  • Salvato P, Battisti A, Concato S et al (2002) Genetic differentiation in the winter pine processionary moth (Thaumetopoea pityocampa–wilkinsoni complex), inferred by AFLP and mitochondrial DNA markers. Mol Ecol 11:2435–2444. https://doi.org/10.1046/J.1365-294X.2002.01631.X

    Article  CAS  PubMed  Google Scholar 

  • Sierpiński Z (1983) Forest protection: for forest technicians. PWRiL, Warszawa

    Google Scholar 

  • Skrzecz I, Sowińska A, Janiszewski W (2014a) Effects of botanical antifeedants on Melolontha melolontha grub feeding on scots pine roots. Folia for Pol Ser A 56:135–140. https://doi.org/10.2478/ffp-2014-0014

    Article  Google Scholar 

  • Skrzecz I, Sowińska A, Janiszewski W (2014b) The influence of botanical antifidants on the development of the May beetle. Sylwan 158:779–786

    Google Scholar 

  • StatSoft (2017) STATISTICA (data analysis software system), version 13.1

  • Sukovata L, Jaworski T, Karolewski P, Kolk A (2015) The performance of Melolontha grubs on the roots of various plant species. Turkish J Agric for 39:107–116. https://doi.org/10.3906/tar-1405-60

    Article  CAS  Google Scholar 

  • Švestka M (2010) Changes in the abundance of Melolontha hippocastani Fabr. and Melolontha melolontha (L.) (Coleoptera: Scarabeidae) in the czech republic in the period 2003–2009. J for Sci 56:417–428. https://doi.org/10.17221/109/2009-jfs

    Article  Google Scholar 

  • Szujecki A (1995) Forest entomology. Wydawnictwo SGGW, Warszawa

    Google Scholar 

  • Szyp-Borowska I, Sikora K (2020) DNA barcoding: a practical tool for the taxonomy and species identification of entomofauna. For Res Pap 80:227–232. https://doi.org/10.2478/frp-2019-0021

    Article  Google Scholar 

  • Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595. https://doi.org/10.1093/genetics/123.3.585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tereba A, Niemczyk M (2017) Variability and cross-species amplification of microsatellite loci in Melolontha melolontha and Melolontha hippocastani (Coleoptera, Scarabaeidae). Entomol News 127:192–197. https://doi.org/10.3157/021.127.0303

    Article  Google Scholar 

  • Tereba A, Niemczyk M (2018) A quick PCR-based method for identification of Melolontha melolontha and Melolontha hippocastani (Coleoptera: Scarabaeidae). Entomol Fenn 29:141–145. https://doi.org/10.33338/ef.77284

    Article  Google Scholar 

  • Trdan S, Čuk J, Poženel A, Bavcon Kralj M, Rot M, Carlevaris B, Bohinc T (2019) Field testing of different synthetic attractants for mass trapping of common European cockchafer (Melolontha melolontha [L.] Coleoptera Scarabaeidae) adults. Acta Agriculturae Scand, Sect B—Soil Plant Sci 69(2):174–180. https://doi.org/10.1080/09064710.2018.1524020

    Article  CAS  Google Scholar 

  • Wagenhoff E, Blum R, Delb H (2014) Spring phenology of cockchafers, Melolontha spp. (Coleoptera: Scarabaeidae), in forests of south-western Germany: results of a 3-years survey on adult emergence, swarming flights, and oogenesis from 2009 to 2011. J for Sci 60:154–165. https://doi.org/10.17221/5/2014-jfs

    Article  Google Scholar 

  • Walter Hase von (1984) Der maikäfer als forstschädling in schlezwig-holstein

  • Wolfe AD, Liston A (1998) Contributions of PCR-based methods to plant systematics and evolutionary biology. Molecular systematics of plants II. Springer, US, pp 43–86

    Chapter  Google Scholar 

  • Woreta D (2016) Reduction of population numbers of Melolontha spp. adults-a review of methods. Folia for Pol Ser A 58:87–95. https://doi.org/10.1515/FFP-2016-0010

    Article  Google Scholar 

  • Woreta D, Sukovata L (2010) Effect of food on the development of the horse-chestnut cockchafer (Melolontha hippocastani F.). Leśne Pr Badaw 17:195–199

    Google Scholar 

  • Woreta D, Sukovata L (2014) Survival and growth of Melolontha spp. grubs on the roots of the main forest tree species. Leśne Pr Badaw 75:375–383

    Google Scholar 

  • Woreta D, Lipiński S, Wolski R (2016) Effects of food source quality on the adults of Melolontha melolontha and M. hippocastani. For Res Pap 77:14–23. https://doi.org/10.1515/frp-2016-0002

    Article  Google Scholar 

  • Yaman M (2017) Entomopathogens in populations of the European cockchafer, Melolontha melolontha (Coleoptera: Scarabaeidae). J Appl Biol Sci 11:1–3

    CAS  Google Scholar 

  • Yeh FC, Yang R-C (1999) POPGENE VERSION 1.31 Microsoft window-based freeware for population genetic analysis quick user guide a joint project development by new feature in current version

  • Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (ssr)-anchored polymerase chain reaction amplification. Genomics 20:176–183. https://doi.org/10.1006/geno.1994.1151

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

K.M., S.O., M.K. and K.K. contributed to conceptualization and methodology; A.N. and T.O. contributed to validation; K.M., S.O., T.O., and A.N. contributed to formal analysis; K.M., S.O., T.O., and A.N contributed to investigation; K.M., S.O., M.K. and K.K. contributed to writing—original draft preparation; K.M., S.O. contributed to writing—review and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Sylwia Okoń.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Consent for publication

The authors agreed to the publication of the manuscript. All authors read and approved the final manuscript.

Availability of data and material

Data are available upon request from the corresponding authors.

Code availability

Not applicable.

Additional information

Communicated by Oliver Gailing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 14 KB)

Supplementary file2 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masternak, K., Okoń, S., Kamola, M. et al. Morphological and genetic variation of Melolontha spp. from pine stands with different composition and proportion of admixed tree species. Eur J Forest Res 141, 617–628 (2022). https://doi.org/10.1007/s10342-022-01464-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10342-022-01464-6

Keywords

Navigation