Skip to main content
Log in

Seasonal Changes of Some Properties and Nutrient Concentrations of the Soils in the Root Zone of Pear Rootstocks

Jahreszeitliche Veränderungen von Bodeneigenschaften und Nährstoffkonzentrationen in der Wurzelzone von Birnenunterlagen

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

Study was aimed to examine the changes in organic matter, CaCO3, pH and some nutrient concentrations in the root zone soils of pear rootstocks depending on time and rootstock variations. For this reason, “Deveci” variety grafted on OHF 333, BA29, Quince A and Quince C rootstocks were used as plant materials. To monitor the variations, soil samples were taken monthly during 8 months from each tree canopy projection areas. According to the results, it was seen that organic matter and CaCO3 content did not vary with time and rootstock but EC varied with the season, pH varied with all factors. Soil nutrient concentrations except K showed variations with time and rootstocks and/or their interactions. Available nutrients in the root zone soils of QC and QA were relatively higher than that in other rootstocks. It was found that nutrient concentrations in root zones in warmer seasons were higher than other seasons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allison LE, Moodie CD (1965) Carbonate. In: Black CA (ed), Methodsof soil analysis, part 2, second ed., pp. 1379–1400 AgronomyMonography 9 ASA, CSSA and SSSA

  • Bravin MN, Tentscher P, Rose J, Hinsinger P (2009) Rhizosphere pH gradient controls copper availability in a strongly acidic soil. Environ Sci Technol 43(15):5686–5691

    Article  CAS  PubMed  Google Scholar 

  • Cancela RC, de Abreu CA, Paz-Gonzalez A (2002) DTPA and Mehlich‑3 micronutrient ex-’ tractability in natural soils. Commun Soil Sci Plant Anal 33:2879–2893

    Article  CAS  Google Scholar 

  • Chai X, Xie L, Wang X, Wang H, Zhang J, Han Z, Wu T, Zhang X, Xy Z, Wang Y (2019) Apple rootstocks with different phosphorus efficiency exhibit alterations in rhizosphere bacterial structure. J Appl Microbiol. https://doi.org/10.1111/jam.14547

    Article  PubMed  Google Scholar 

  • Chen CR, Condron LM, Davis MR, Sherlock RR (2003) Seasonal changes in soil phosphorus and associated microbial properties under adjacent grassland and forest in New Zealand. For Ecol Manag 177(1–3):539–557

    Article  Google Scholar 

  • Darrah PR (1993) The rhizosphere and plant nutrition: a quantitative approach. Plant Soil 155/156:1–20

    Article  Google Scholar 

  • Erdal I, Aşkın MA, Kucukyumuk Z, Yıldırım F, Yıldırım A (2008) Rootstock has an important role on iron nutrition of apple trees. World J Agric Sci 4(2):173–177

    Google Scholar 

  • Eskandari H (2011) The importance of iron (Fe) in plant products and mechanism of its uptake by plants. J Appl Environ Biol Sci 1(10):448–452

    Google Scholar 

  • Fabre A, Pinay G, Ruffinoni C (1996) Seasonal changes in inorganic and organic phosphorus in the soil of a riparian forest. Biogeochemistry 35(3):419–432

    Article  Google Scholar 

  • Fallahi E, Westwood MN, Chaplin MH, Richardson DG (1984) Influence of apple rootstocks, K and N fertilizers on leaf mineral composition and yield. J Plant Nutr 7:1161–1177

    Article  CAS  Google Scholar 

  • Gaume A, Mächler F, De León C, Narro L, Frossard E (2001) Low‑P tolerance by maize (Zea 540 mays L.) genotypes: significance of root growth, and organic acids and acid phosphatase root exudation. Plant Soil 228(2):253–264

    Article  CAS  Google Scholar 

  • Havlin JL, Tisdale SL, Nelson WL, Beaton JD (2016) Soil fertility and fertilizers. Pearson Education India,

    Google Scholar 

  • Haynes RJ, Naidu R (1998) Influence of lime, fertilizer and manure applications on soil organic matter content and soil physical conditions: a review. Nutr Cycl Agroecosyst 51(2):123–137

    Article  Google Scholar 

  • Hinsinger P (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Adv Agron 64:225–266

    Article  CAS  Google Scholar 

  • Hussain A, Maqsood MA (2011) Root zone temperature influences nutrient accumulation and use in maize. Pak J Bot 43:1551–1556

    Google Scholar 

  • Ikinci A, Bolat I, Ercisli S, Kodad O (2014) Influence of rootstocks on growth, yield, fruit quality and leaf mineral element contents of pear cv.“Santa Maria”in semi-arid conditions. Biol Res 47(1):71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice Hall of India Private Limited, New Delhi

    Google Scholar 

  • Jimenez S, Pinochet J, Gogorcena Y, Betrán JA, Moreno MA (2007) Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Sci Hortic 112:73–79

    Article  CAS  Google Scholar 

  • Jones DL, Darrah PR (1995) Influx and efflux of organic acids across the soil-root interface of Zea mays L. and its implications in rhizosphere C flow. Plant Soil 173:103–109

    Article  CAS  Google Scholar 

  • Krämer S, Green DM (2000) Acid and alkaline phosphatase dynamics and their relationship to soil microclimate in semiarid woodland. Soil Biol Biochem 32(2):179–188

    Article  Google Scholar 

  • Kucukyumuk Z, Erdal I (2011) Rootstock and cultivar effect on mineral nutrition, seasonal nutrient variation and correlations among leaf, flower and fruit nutrient concentrations in apple trees. Bulg J Agric Sci 17(5):633–641

    Google Scholar 

  • Lindsay WL, Norvell WA (1969) Development of a DTPA micronutrient soil test. Soil Sci Soc Am Proc 35:600–602

    Google Scholar 

  • Mahmoud E, El-Kader NA, Robin P, Akkal-Corfini N, El-Rahman LA (2009) Effects of different organic and inorganic fertilizers on cucumber yield and some soil properties. World J Agric Sci 5(4):408–414

    CAS  Google Scholar 

  • Marschner H (2011) Marschner’s mineral nutrition of higher plants. Academic Press,

    Google Scholar 

  • Marschner H, Römheld V (1983) In-llivo measurement of root-induced pH changes at the soil-root interface. Effect of plant species and nitrogen source. Z Pflanzenphysiol 111:241–251

    Article  CAS  Google Scholar 

  • McGrath DA, Comerford NB, Duryea ML (2000) Litter dynamics and monthly fluctuations in soil phosphorus availability in an Amazonian agroforest. For Ecol Manag 131(1–3):167–181

    Article  Google Scholar 

  • Morel C, Hinsinger P (1999) Root-induced modifications of the exchange of phosphate ion between soil solution and soil solid phase. Plant Soil 211(1):103–110

    Article  CAS  Google Scholar 

  • Novak P, Vopravil J, Lagova J (2010) Assessment of the soil quality as a complex of productive and environmental soil function potentials. Soil Water Res 5(3):113–119

    Article  Google Scholar 

  • Nxawe S, Laubscher CP, Ndakidemi PA (2009) Effect of regulated irrigation water temperature on hydroponics production of spinach (Spinacia oleracea L). Afr J Agric Res 4:1442–1446

    Google Scholar 

  • Nye PB (1981) Changes of pH across the rhizosphere induced by roots. Plant Soil 61:7–26

    Article  CAS  Google Scholar 

  • Nye PB (1986) Acid-base changes in the rhizosphere. In: Tinker B, Lauchli A (eds) Advances in plant nutrition, 2nd edn. Praeger Scientific, New York, pp 129–153

    Google Scholar 

  • Olsen A (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. US Dep. of Agri. Circ, Washington, DC., p 939

    Google Scholar 

  • Peech M (1965) Hydrogen-ion activity. In: Black CA (ed) Methods of soil analysis. American Society of Agronomy, Madison, pp 914–916

    Google Scholar 

  • Peret B, Clement M, Nussaume L, Desnos T (2011) Root developmental adaptation to phosphate starvation: better safe than sorry. Trends Plant Sci 16:442–450

    Article  CAS  PubMed  Google Scholar 

  • Perrot K, Sarathchandra S, Waller IE (1990) Seasonal storage and release of phosphorus and potassium by organic matter and the microbial biomass in a high-producing pastoral soil. Aust J Soil Res 28:593–608

    Article  Google Scholar 

  • Pregitzer KS, King JS (2005) Effects of soil temperature on nutrient uptake. In: Nutrient acquisition by plants. Springer, Berlin, Heidelberg, pp 277–310

    Chapter  Google Scholar 

  • Richardson AE (2001) Prospects for using soil microorganisms to improve the acquisition of phosphorus by plants. Aust J Plant Physiol 28:897–906

    Google Scholar 

  • Ruan J, Gerendás J, Härdter R, Sattelmacher B (2007) Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Ann Bot 99(2):301–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strahm BD, Harrison RB (2007) Mineral and organic matter controls on the sorption of macronutrient anions in variable-charge soils. Soil Sci Soc Am J 71:1926–1933

    Article  CAS  Google Scholar 

  • Tang H, Wang Y, Niu L, Jing W, Chen Y (2019a) Enhanced adaptation to low‑p stress by altering rhizosphere exudation and P‑uptake rate other than root morphological traits in two maize genotypes https://doi.org/10.20944/preprints (Preprints 2019, 2019020212)

    Book  Google Scholar 

  • Tang MJ, Zhu Q, Zhang FM, Zhang W, Yuan J, Sun K, Xu FJ, Dai CC (2019b) Enhanced nitrogen and phosphorus activation with an optimized bacterial community by endophytic fungus Phomopsis liquidambari in paddy soil. Microbiol Res 221:50–59

    Article  CAS  PubMed  Google Scholar 

  • Tuason MMS, Arocena JM (2009) Root organic acid exudates and properties of rhizosphere soils of white spruce Picea glauca and subalpine fir (Abies lasiocarpa). Can J Soil Sci 89(3):287–300. https://doi.org/10.4141/CJSS08021

    Article  CAS  Google Scholar 

  • Usul M, Dengiz O (2010) Pedological development on four different parent materials. Anadolu Tarım Bilim Derg 25(3):204–211

    Google Scholar 

  • Walkley A, Black IA (1934) An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci 37(1):29–38

    Article  CAS  Google Scholar 

  • Xu Q, Huang B (2006) Seasonal changes in root metabolic activity and nitrogen uptake for two cultivars of creeping bentgrass. Hort Sci 41:822–826

    CAS  Google Scholar 

  • Ye G, Lin Y, Kuzyakov Y, Liu D, Luo J, Lindsey S et al (2019) Manure over crop residues increases soil organic matter but decreases microbial necromass relative contribution in upland Ultisols: Results of a 27-year field experiment. Soil Biol Biochem 134:15–24

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İbrahim Erdal.

Ethics declarations

Conflict of interest

İ. Nazli and İ. Erdal declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazli, İ., Erdal, İ. Seasonal Changes of Some Properties and Nutrient Concentrations of the Soils in the Root Zone of Pear Rootstocks. Erwerbs-Obstbau 64, 211–217 (2022). https://doi.org/10.1007/s10341-021-00608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-021-00608-z

Keywords

Schlüsselwörter

Navigation