Skip to main content
Log in

Bioindikatoren für den Dormanzstatus bei Obstgehölzen

Bioindicators for the Dormancy Status of Fruit Trees

  • Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Zusammenfassung

Im Rahmen einer Bachelorarbeit wurde in einem Übersichtsreferat die Literatur zu potentiellen Bioindikatoren für den aktuellen Dormanzstatus eines Obstbaumes im Winter zusammengestellt und bewertet. Die Thematik steht sowohl in Zusammenhang mit den Chillingmodellen zur Aufnahme der aktuellen Temperatursummen (0–7 °C) im Winter als auch als Voraussetzung für kulturtechnische Maßnahmen im Obstbau, um die Blüte einzuleiten. Potentielle Bioindikatoren ließen sich in 10 Hauptgruppen unterteilen: Veränderungen der Knospe von Ende der Paradormancy bis zu Beginn der Ecodormancy in der 1) Morphologie, 2) Atmungsrate, 3) im Wassergehalt; 4) Membran; 5) Source: Sink- Beziehung bzw. Zellkommunikation, 6) von Kohlenhydraten; 7) von Polyaminen, 8) von Phytohormonen und 9) der Expression der TFL1- und Ft sowie 10) der DAM (Dormancy associated MADS-Box) Gene.

Die Literaturrecherche hat gezeigt, dass

1) makroskopische und mikroskopische Veränderungen, z. B. Knospenschwellen auftreten,

2) die Atmung der Knospen im Winter sich während der Endodormancy kaum veränderte, aber am Anfang des Frühlings zur Voraussage des Blühzeitpunktes sowie der Anzahl der Knospen diente;

3) der relative Wasserhaushalt (RWC) in der Winterruhe der Obstgehölze (Dormanz) sich änderte, d. h. a) in den Knospen während der Vorruhe (Paradormancy) der Anteil freien Wassers abnimmt und anschließend die Knospen während der Endodormancy gebundenes Wasser enthalten, b) die Synthese und Aktivität der Dehydrine (hydrophile Proteine) induziert wird, langsam abnimmt und erst bei Erreichen von warmen Temperaturen zum Erliegen kommt;

4) bei den Membranveränderungen bzw. im Informations- und Signalaustausch von Zelle zu Zelle (‘Zellkommunikation’) die Plasmodesmen in Dichte und Durchlässigkeit z. B. für den Botenstoff Ca 2+ abnehmen und Zellwandverschlüsse an Plasmodesmen unter Wirkung von Kurztagbedingungen entstehen , sodass kein Signalaustausch mehr möglich ist und das Wachstum eingestellt wird. Erst wenn der Einfluss des Chillings den Abbau dieser Zellwandverschlüsse ermöglicht, kann symplastischer Transport von Signalmolekülen, Hormonen und Proteinen stattfinden;

5) bei den Kohlenhydraten a) der Saccharosegehalt in der Winterruhe (Endodormancy) am höchsten ist und zum Frühling hin zur Ecodormancy-Phase abnimmt, b) Saccharose bei frostfreien Temperaturen im Xylem aus der Wurzel in die Knospe verlagert wird, c) der Stärkegehalt durch Hydrolyse abnahm und gleichzeitig der Glukosegehalt (bzw. Monosaccharidgehalt) anstieg;

6) im Stickstoffwechsel der Proteingehalt in der Paradormancy und der Aminosäuregehalt (z. B. Prolin) während der Endodormancy zunehmen;

7) mit zunehmendem Chilling der Gehalt an Polyaminen während der Winterruhe (Endodormancy) bis zum Beginn der Ecodormancy-Phase z. B. bei Reben ansteigt;

8) bei den Phytohormonen der Gehalt an Gibberellinen (GA 4 ) und Cytokininen eine Rolle spielt und der Abscisinsäuregehalt (ABA) nach Kälteeinwirkung abnimmt und Gibberellinapplikation am Ende des Winters die Dormanz brechen kann;

9) ca. 20 Gene up- und ca. 30 Gene down-reguliert werden; das blütenhemmende Gen TFl-1 (Terminal Flower locus)-1 z. B. bei Nashibirnen am höchsten während des Chillings bzw. der Endodormancy im frühen Winter exprimiert wurde und vermutlich das Chillingbedürfnis erhöht, während sich die Expression der blütenfördernden FT (Flowering Locus T) -Gene während des Forcings erhöhte,

10) die Expression der Gene DAM 1 und 4 aus der MADS-Box und die der Gene DAM 5 und DAM 6 steigt mit eintretendem Kurztag und Kälte im Herbst, während DAM 2 im Langtag exprimiert wurde, aber sich die Genexpression von DAM 3 nicht veränderte. MikroRNAs bewirken ihre Genexpression und Translation; ihre Aktivität ist temperaturabhängig und ihre Expression steigt mit kalten Temperaturen. Alle DAM Gene – bis auf DAM 3 – waren abhängig von der Photoperiode, so dass insgesamt der relative Wassergehalt (RWC), Stärke und Glukose (oder ihr Verhältnis) in der Knospe, Aminosäuren wie Prolin mit seiner osmotischen Wirkung, ABA und die Expression der DAM-Gene 1, 4, 5, 6 oder anderer Gene als geeignete Bioindikatoren für den Dormanzstatus der Obstgehölze erscheinen.

Im 2. Teil werden traditionelle und alternative neue Mittel zur Überwindung der Winterruhe (Dormanz), die größtenteils diese Komponenten enthalten, und ihre Wirkung vorgestellt.

Abstract

This contribution is part of a bachelor thesis, which reviews the literature about suitable bio-indicators for the current dormancy status of a (fruit) tree in the winter. This is part of an on-going chilling research project and evaluation of the three chilling models as to their suitability for fruit growing in temperate zone regions with cool winters. The aim is to provide information on the dormancy status of a tree for the application of cultivation techniques to overcome dormancy.

Potential bio-indicators could be grouped into one of 10 categories: Changes in 1) morphology, 2) bud respiration, 3) relative water content (RWC); 4) membrane permeability; 5) source : sink relationship viz cell communication; 6) carbohydrate content and metabolism; 7) polyamines, 8) phytohormones (plant growth regulators) and 9) flowering genes TFL1- and FT, 10) DAM (dormancy associated MADS box ) genes and their expression. The literature review showed the following changes between paradormancy (facultative dormancy), endodormancy and ecodormancy:

1) macroscopic and microscopic changes (until bud swell from February onwards);

2) respiration of the buds hardly changed during endodormancy, but later indicative to predict the flowering date and number of buds e. g. in kiwi vines;

3) Changes in relative water content (RWC) of the dormant buds with a) reduction in free water during paradormancy and b) appearance of bound water during endodormancy and c) induction and synthesis of dehydrins (hydrophilic proteins);

4) Changes in membrane permeability and cell to cell signaling with a decrease in both plasmodesmata density and activity from para to endodormancy in short days, which induce plasmodesmata clogging by glucans; chilling induces the synthesis of glucanase, an enzyme, which breaks down the clogging and re-opens plasmodesmata to enable Ca 2+ signaling;

5) changes in the carbohydrate metabolism, where a) sucrose contents in the buds peaks during endodormancy before release towards ecodormancy, b) sucrose (and sorbitol) can be transported in the xylem on frost free days from the roots, c) starch content decreases due to hydrolysis into glucose, i. e. monosaccharides increase in the bud;

6) changes in the nitrogen metabolism; the protein content in the tree trunk increased during paradormancy and amino acids like the osmoticum proline in the buds during endodormancy;

7) increase in polyamines during chilling in endodormancy and ecodormancy;

8) the phytohormone ABA decreased during dormancy, while gibberellins (GA) and cytokinins played various roles in dormancy breaking;

9) ca. 20 genes are up-regulated and ca. 30 genes are down-regulated; the expression of the flower-inhibiting gene TFL-1 (Terminal F flower Locus-1) peaked at the start of endodormancy, maybe associated with the chilling requirement, whereas expression of the flowering-promoting gene FT (Flowering Locus T) peaks during forcing;

10) the expression of genes in the DAM (dormancy associated MADS box) 1 and DAM 4 as well as those of DAM 5 and DAM 6 both increased with the onset of cold temperatures and short days in the autumn. By contrast, DAM 2 is expressed under long day (summer) conditions and DAM 3 is continuously expressed irrespective of photoperiod and temperature. MicroRNA enabled the expression and translation of DAM genes; their activity is temperature dependent and increases under cold temperatures. All DAM genes, except for DAM 3, were dependent on photoperiod.

Overall, relative water content (RWC), starch and glucose (or its ratio), amino acid (proline), ABA and DAM 1,4,5,6, seemed suitable bio-indicators for the dormancy status of a tree.

The role and mode of action of traditional and alternative, new bud breaking enhancers (BBE), which often contain some of the above first eight compounds, are described in the second part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Literatur

  • Altman A, Goren R (1974) Growth and dormancy cycles in citrus bud cultures and their hormonal control. Physiol Plant 30:240–245

    Article  CAS  Google Scholar 

  • Arora R, Rowland LJ, Tanino K (2003) Induction and release of bud dormancy in woody perennials: a science comes of age. HortScience 38(5):911–921

    Google Scholar 

  • Barakat A, Sriram A, Park J, Zhebentyayeva T, Main D, Abbott A et al (2012) Genome wide identification of chilling responsive microRNas in Prunus persica. BMC Genomics 13:481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blanke MM (2015) Möglichkeiten der Verbesserung der Rotfärbung bei Äpfeln – Übersichtsreferat. Erwerbs-Obstbau 57:47–62

    Article  Google Scholar 

  • Blanke MM (2016) Biostimulantien – eine Branche (er-)findet sich selbst. Erwerbs-Obstbau 58:81–90

    Google Scholar 

  • Blanke MM, Kunz A (2009) Einfluss rezenter Klimaveränderungen auf die Phänologie bei Kernobst am Standort Klein-Altendorf – anhand 50-jähriger Aufzeichnungen. Erwerbs-Obstbau 3(51):101–114

    Article  Google Scholar 

  • Bonhomme M, Rageau R, Lacointeu A, Gendraud M (2005) Influences of cold deprivation during dormancy on carbohydrate contents of vegetative and floral primordia andnearby structures of peach buds (Prunus persica L. Batsch). Sci Hortic 105:223–240

    Article  CAS  Google Scholar 

  • Bound S, Miller P (2014) Waiken® – an effective dormancy breaker in Sylvia & Vista Sweet cherry (in Tasmania), IHC Brisbane, August 2014. Digital Poster Session, Symposium 08, Digital Poster 593 bzw. 1314.

  • Castéde SJ, Campoy A, Le Dantec L, Quero-Garcia J, Bearreneche T, Wenden B, Dirlewanger E (2015) Mapping of candidate genes involved in bud dormancy and flowering time in sweet cherry (Prunus avium L.). PLoS ONE 10(11) doi:10.1371

    PubMed  PubMed Central  Google Scholar 

  • Dennis FG Jr. (1994) Dormancy – what we know (and don’t know). HortScience 29(11):1249–1254

    Google Scholar 

  • Edwards CR (1990) Ten year’s experience with temperate fruits in the tropics. In: Temperate zone fruits in the tropics and subtropics. Acta Hortic 279:47–51

    Article  Google Scholar 

  • Einhorn T, Gibeaut D (2013) Phenological development and hardiness of sweet cherry reproductive buds between late dormancy and flowering. In: Robinson T (Hrsg) Physiological principles of fruit crops and their quality. Cornell Universität, Geneva New York (Poster Abstract Nr. 20), Seite 73.

    Google Scholar 

  • Erez A (1995) Means to compensate for insufficient chilling to improve bloom and leafing. Dormancy and the related problems of deciduous fruit trees. Acta Hortic 395:81–95

    Article  Google Scholar 

  • Erez A, Faust M, Line MJ (1998) Changes in water status in peach buds on induction, development and release from dormancy. Sci Hortic 73:111–123

    Article  Google Scholar 

  • Faust M, Liu D, Millard MM, Stutte GW (1991) Bound versus free water in dormant apple buds – a theory for endodormancy. HortScience 26(7):887–890

    Google Scholar 

  • Faust M, Erez A, Rowland LJ, Wang SY, Norman HA (1997) Bud dormancy in perennial fruit trees: physiological basis for dormancy induction, maintenance, and release. HortScience 32(4):623–628

    Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987a) The temperature dependence of dormancy breaking in plants: mathematical analysis of a two-step model involving a cooperative transition. J Theor Biol 124:473–483

    Article  Google Scholar 

  • Fishman S, Erez A, Couvillon GA (1987b) The temperature dependence of dormancy breaking in plants: computer simulation of processes studied under controlled temperatures. J Theor Biol 1987(126):309–321

    Article  Google Scholar 

  • Friedrich G, Fischer M (2000) Physiologische Grundlagen des Obstbaues, 3. Aufl. Ulmer, Stuttgart, 200–203

    Google Scholar 

  • Gonzales-Rossia D, Reig C, Dovis V, Gariglio N, Agusti M (2008) Changes on carbohydrates and nitrogen content in the bark tissues induced by artificial chilling and its relationship with dormancy bud break in Prunus ssp. Sci Hortic 118:275–281

    Article  Google Scholar 

  • Heide OM, Prestrud A (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  PubMed  Google Scholar 

  • Horvath D (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177(6):523–531

    Article  CAS  Google Scholar 

  • IPCC (2014) Climate change 2014: Synthesis report. In: Core Writing Team, Pachauri RK, Meyer LA (Hrsg) Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. IPCC, Geneva, Switzerland, S 151

    Google Scholar 

  • Ito A, Sakamoto D, Moriguchi T (2012) Carbohydrate metabolism and its possible roles in endodormancy transition in Japanese pear. Sci Hortic 144:187–194

    Article  CAS  Google Scholar 

  • Ito A, Saito T, Sakamoto D, Sugiura T, Bai S, Moriguchi T (2015) Physiological differences in bud breaking and flowering after dormancy completion. Tree Physiol doi:10.1093/treephys/tpv115

    Google Scholar 

  • Jian L, Li PH, Sun L, Chen T, Chen HH (1997) Alterations in ultrastructure and subcellular localization of Ca2+ in poplar apical bud cells during the induction of dormancy. J Exp Bot 48(311):1195–1207

    Article  CAS  Google Scholar 

  • Krasniqi A‑L, Damerow L, Kunz A, Blanke MM (2013) Quantifying key elicitors for alternate fruit bearing in cv. ‘Elstar’ apple-invited review. Plant Sci 212:10–14

    Article  CAS  PubMed  Google Scholar 

  • Lang GA (1987) Dormancy: a new universal terminology. HortScience 22:817–820

    Google Scholar 

  • Leida C, Conejero A, Arbona V, Gomez-Cadenas A, Llacer G, Badenes ML, Rios G (2012) Chilling-dependent release of seed and bud dormancy in peach associates to common changes in gene expression. PLoS One 7(5):e35777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy-associated MADS genes from the EVG locus of peach [Prunus persica L. Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot doi:10.1093/jxb/erp195

    Google Scholar 

  • Luedeling E (2012) Climate change impacts on winter chill for temperate fruit and nut production: a review. Sci Hortic 144:218–229

    Article  Google Scholar 

  • Luedeling E, Blanke MM, Gebauer J (2009) Auswirkungen des Klimawandels auf die Verfügbarkeit von Kältewirkung (Chilling) für Obstgehölze in Deutschland. Erwerbs-Obstbau 51:81–94

    Article  Google Scholar 

  • Luedeling E, Guo L, Dai J, Leslie C, Blanke MM (2013a) Differential responses of trees to temperature variation during the chilling and forcing phases. Agric For Meteorol 181:33–42

    Article  Google Scholar 

  • Luedeling E, Kunz A, Blanke MM (2013b) Identification of chilling and heat requirements of cherry trees – a statistical approach. Int J Biometeorol 57:679–689

    Article  PubMed  Google Scholar 

  • Marafon AC, Citadin I, Amarante L do, Herter FG, Hawerroth FJ (2011) Chilling privation during dormancy period and carbohydrate mobilization in Japanese pear trees. Sci Agric 68(4):462–468

    Article  CAS  Google Scholar 

  • Marquat C, Vandamme M, Gendraud M, Petel G (1999) Dormancy in vegetative buds of peach: relation between carbohydrate absorption potentials and carbohydrate concentration in the bud during dormancy and its release. Sci Hortic 79:151–162

    Article  CAS  Google Scholar 

  • Martin E, Bernad D, Solans, C (2015) Influence of Syncron® and Nitroactive® on flowering and fruit quality in kiwi and apple cultivars (in Spain). 2. Biostimulants Kongress Florenz, Nov. 2015 Poster P85. Digital Proceedings, Abstract 88, S. 157.

  • Mauget JC, Rageau R (1988) Bud dormancy and adaptation of apple tree to mild winter climates. ‘Apple culture’. Acta Hortic 232:101–108

    Article  Google Scholar 

  • Maurel K, Berenhauser G, Leite, Bonhomme M, Guilliot A, Rageau R, Petel G, Sakr S (2004) Trophic control of bud break in peach (Prunus persica L.) trees: a possible role of hexoses. Tree Physiol 24:579–588

    Article  CAS  PubMed  Google Scholar 

  • McPherson HG, Snelgar WP, Manson PJ, Snowball AM (1997) Bud respiration and dormancy of kiwifruit (Actinidia deliciosa). Ann Bot 80:411–418

    Article  Google Scholar 

  • Mohamed AKA (2008) The effect of chilling, defoliation and hydrogen cyanamide on dormancy release, bud break and fruiting of Anna apple cultivar. Scientia 118:25–32

    CAS  Google Scholar 

  • Mohamed HB, Vadel AM, Geuns JMC, Khemira H (2010) Biochemical changes in dormant grapevine shoot tissues in response to chilling: possible role in dormancy release. Sci Hortic 124:440–447

    Article  Google Scholar 

  • North MS, Kock K, Booyse M (2014) Rest breaking agents and application date affect budbreak but not yield in ‘Granny Smith’ and ‘Royal Gala’ apple. Proc. Integrating Environmental Physiology and Orchard Systems, Stellenbosch, Dez. 2012. Acta Horticulturae 1058:639–643

  • Perez FJ, Lira W (2005) Possible role of catalase in post-dormancy bud break in grapevines. J Plant Physiol 162:301–308

    Article  CAS  PubMed  Google Scholar 

  • Petri JL, Francescatto P, Couto M, Gabardo GC (2014) Syncron ® as an alternative to Dormex ® to induce apple bud break and flowering IHC Brisbane, August 2014. Digital Poster Session, Symposium 08, Digital Poster 1304/3018.

    Google Scholar 

  • Petri JL, Uber SC, Esperanca CF, Couto M, Francescatto P (2015a) Inducing apple bud break with glutamic acid 2. Biostimulants Kongress, Florenz, Nov. 2015. Poster P15.Digital proceedings, Abstract 92., S 77

    Google Scholar 

  • Petri JL, Uber SC, Couto M, Francescatto P, Esperanca CF (2015b) The efficacy of Erger (R) on spring bud break of apples – an alternative to hydrogen cyanamide 2. Biostimulants Kongress, Florenz, Nov. 2015. Poster P77. Digital proceedings, Abstract 51., S 146

    Google Scholar 

  • Petri JL (2015c) Bud breaking with bluprins as an alternative WIN Conference, satellite meeting to 2. Biostimulants Kongress, Florenz, 20. Nov. 2015.

    Google Scholar 

  • Pirondi (2015) Bluprins and plant dormancy (in Brazil) – a general overview WIN Conference, satellite meeting to 2. Biostimulants Kongress, Florenz, 20. Nov. 2015.

    Google Scholar 

  • Povero G, Hoeberichts F (2015) Next generation sequencing to investigate molecular mechanisms behind dormancy in kiwi in relation to ErgerTM Biostimulants Kongress, Florenz, Nov. 2015. Digital proceedings O 12, Abstract 223., S 245

    Google Scholar 

  • Richardson AC, Walton EF, Meekings JS, Boldingh HL (2010) Carbohydrate changes in kiwifruit buds during the onset and release from dormancy. Sci Hortic 124:463–468

    Article  CAS  Google Scholar 

  • Richardson EA, Seeley SD, Walker DR (1974) A model for estimating the completion of rest for Redhaven and Elberta peach trees. HortScience 9:331–332

    Google Scholar 

  • Rinne P, Saarelainen A, Junttila O (1994) Growth cessation and bud dormancy in relationto ABA level in seedlings and coppice shoots of Betula pubescens as affected by a short photoperiod, water stress and chilling. Physiol Plant 90:451–458

    Article  CAS  Google Scholar 

  • Rinne, P, Kaikuranta, PM, van der Schoot, C (2001) The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. The Plant Journal 26(3):249–264.

  • Rios G, Leida C, Conejero A, Badenes ML (2014) Epigenetic regulation of bud dormancy events in perennial plants. Front Plant Sci 5:Article 247

    PubMed  Google Scholar 

  • Ross JD, Bradbeer JW (1971) Studies in seed dormancy: IV. The role of endogenous inhibitors and gibberellins in dormancy and germination of Lorylus avellana L. Planta 100(4):288–302

    Article  CAS  PubMed  Google Scholar 

  • Santamaria ME, Rodriguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Ann Bot 108:485–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saure MC (1985) Release of deciduous trees from dormancy. Hortic Rev 7:240–267

    Google Scholar 

  • Sinska I, Lewak S (1977) Is the gibberellin A4 biosynthesis involved in the removal of dormancy in apple seeds? Plant Sci Lett 9:163–170

    Article  CAS  Google Scholar 

  • Subhadrabandhu S (1995) Problems in growing deciduous fruits in warm tropics. Dormancy and the related problems of deciduous fruit trees. Acta Hortic 395:69-80

  • Tartachnyk I, Blanke MM (2004) Effect of delayed fruit harvest on photosynthesis, transpiration and nutrient remobilization of apple leaves. New Phytol 164:441–450

    Article  Google Scholar 

  • Weinberger JH (1950) Chilling requirements of peach varieties. Proc. Am Soc Hort Sci 56:122–128

    Google Scholar 

  • Yooyongwech S, Horigane AK, Yoshida M, Yamaguchi M, Sekozawa Y, Sugaya S, Gemma H (2008) Changes in aquaporin gene expression and magnetic resonance imaging of water status in peach tree flower buds during dormancy. Physiol Plant 134:522–533

    Article  CAS  PubMed  Google Scholar 

Download references

Danksagung

Wir danken Frau Dr. Christa Lankes, INRES-Gartenbauwissenschaft für die Aufnahmen der Blütenknospen von Süßkirschen, Prof. Amnon Erez (Israel) für die Photos zur Dormanzbrechnung bei ‘Golden Delicious’ mit Mineralölen, (emer.) Prof. F. Bangerth für die Korrektur des Abschnitts Phytohormone, Daniel Zinsmeister für kritische Durchsicht des Manuskriptes und Dr. David Cooke, St. Austell, UK für die Korrektur des englischen Abstracts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Blanke.

Additional information

Die Nennung eines Produktes impliziert nicht automatisch eine Bevorzugung gegenüber anderen, nicht untersuchten oder nicht genannten Produkten – die aktuelle Zulassungssituation ist zu beachten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hillmann, L., Kaufmann, H. & Blanke, M. Bioindikatoren für den Dormanzstatus bei Obstgehölzen. Erwerbs-Obstbau 58, 141–157 (2016). https://doi.org/10.1007/s10341-016-0284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-016-0284-8

Schlüsselwörter

Keywords

Navigation