Skip to main content

Advertisement

Log in

Larval food influences temporal oviposition and egg quality traits in females of Lobesia botrana

  • Original Paper
  • Published:
Journal of Pest Science Aims and scope Submit manuscript

Abstract

Many phytophagous insects are agricultural pests, and control methods require accurate monitoring and decisions based on the determination of population age structure. The reproductive output (fecundity, egg size and percent egg hatch) is a central life history trait because it determines the offspring number, and temporal oviposition patterns are of primary importance in conditioning larval hatching and the occurrence of later larval instars in time. In turn, these phenomena determine the window for natural enemy attack and thus impact the context of biological control programmes. In addition, for most phytophagous insects, the quality of the host plants that larvae consume determines the insects’ reproductive output. The purpose of the present study was to determine whether the number of eggs laid, egg size and egg hatch percentage vary with female age and the cultivar on which females develop as larvae, as well as the temporal effects of these parameters. This determination was performed in laboratory experiments where larvae were reared on artificial diets based on dried fruits of seven cultivars. Our results showed that the cultivars had a significant effect on female temporal oviposition. Independent of the food tested, the numbers of oviposited eggs, their size and percent egg hatch decreased with daily oviposition rank. Such temporal patterns must be incorporated in age-structured mathematical models used in the design of control strategies. Temporal oviposition and variation in egg quality traits will also be useful in biological control programmes, especially when based on egg or larval parasitoids, which is thus discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agamy E (2010) Field evaluation of the egg parasitoid, Trichogramma evanescens West. against the olive moth Prays oleae (Bern.) in Egypt. J Pest Sci 83:53–58

    Article  Google Scholar 

  • Ainseba B, Picart D, Thiéry D (2011) An innovative multistage, physiologically structured, population model to understand the European grapevine moth dynamics. J Math Anal Appl 382:34–46

    Article  Google Scholar 

  • Andrade GS, Pratissoli D, Dalvi LP, Desneux N, Gonçalves HJ (2011) Performance of four Trichogramma species (Hymenoptera: Trichogrammatidae) as biocontrol agents of Heliothis virescens (Lepidoptera: Noctuidae) under various temperature regimes. J Pest Sci 84:313–320

    Article  Google Scholar 

  • Arlettaz R, Godat S, Meyer H (2000) Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biol Conserv 93:55–60

    Article  Google Scholar 

  • Awmack CS, Leather SR (2002) Host plant quality and fecundity in herbivorous insects. Annu Rev Entomol 47:817–844

    Article  CAS  PubMed  Google Scholar 

  • Baguley T (2012) Serious stats: A guide to advanced statistics for the behavioural sciences. Palgrave Macmillan, Palgrave

    Google Scholar 

  • Barata A, Correia Santos S, Malfeito-Ferreira M, Loureiro V (2012) New insights into the ecological interaction between grape berry microorganisms and drosophila flies during the development of sour rot. Microbial Ecol 64:416–430

    Article  Google Scholar 

  • Barnay O (1999) Dynamique des populations et relation hôte-parasitoïde chez le couple Lobesia botrana Den. and Schiff. Trichogramma cacoeciae Marchal, dans le cadre de la lutte biologique en vignoble. PhD dissertation, Université Paris VI

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Berrigan D (1991) The allometry of egg size and number in insects. Oikos 60:313–321

    Article  Google Scholar 

  • Bovey P (1966) Super-famille des Tortricoidea. In: Balachowsky AS (ed) Entomologie Appliquée à l’Agriculture, Lépidoptères, vol 2. Masson et Cie, Paris, pp 456–893

    Google Scholar 

  • Calvin DD, Knapp MC, Welch SM (1984) Impact of environmental factors on Trichogramma pretiosum reared on Southwestern corn borer eggs. Environ Entomol 13:774–780

    Article  Google Scholar 

  • Carey JR (2001) Insect biodemography. Annu Rev Entomol 46:79–110

    Article  CAS  PubMed  Google Scholar 

  • Chapman RF, Simpson SJ, Douglas AE (2013) The insects: structure and function. Cambridge University Press, Cambridge

    Google Scholar 

  • Cozzi G, Pascale M, Perrone G, Visconti A, Logrieco A (2006) Effect of Lobesia botrana damages on black aspergilli’s rot and ochratoxin A content in grapes. Int J Food Microbiol 111:88–92

    Article  Google Scholar 

  • Delbac L, Thiéry D (2015) Grape flowers and berries damage by Lobesia botrana larvae (Denis & Schiffernüller) (Lepidoptera: Tortricidae) and relation to larval age. Aust J Grape Wine Res, in press

  • Dunlap-Pianka H, Boggs CL, Gilbert EL (1977) Ovarian dynamics in heliconiine butterflies: programmed senescence versus eternal youth. Science 197:487–490

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn KW, Lorenz DH (1977) Phonologische Entwicklumggsstadien der Rebe—Nachrichtenbl. Deutschl Pflanzenschutzdkunde (Braunschweig) 29:119–120

    Google Scholar 

  • El-Wakeil NE, Farghaly H, Zakia A (2010) Efficacy of Trichogramma evanescens in controlling the grape berry moth Lobesia botrana in grape farms in Egypt. Arch Phytopathol Plant Protect 42:705–714

    Article  Google Scholar 

  • Farahani S, Talebi AA, Fathipour Y (2012) Life table of Spodoptera exigua (Lepidoptera: Noctuidae) on five soybean cultivars. Psyche. doi:10.1155/2012/513824

    Google Scholar 

  • Fox C, Czesak ME (2000) Evolutionary ecology of progeny size in arthropods. Annu Rev Entomol 45:341–369

    Article  CAS  PubMed  Google Scholar 

  • Fox J, Weisberg S (2011) An R companion to applied regression, 2nd edn. Sage Publications, Thousand Oaks

    Google Scholar 

  • Gravot E, Blancard D, Fermaud M, Lonvaud A, Joyeux A (2001) La pourriture acide. I—Aetiologie: recherche de causes de cette pourriture dans le vignoble bordelais. Phytoma 543:36–39

    Google Scholar 

  • Gutierrez AP, Ponti L, Cooper ML, Gilioli G, Baumgartner J, Duso C (2012) Prospective analysis of the invasive potential of the European grapevine moth Lobesia botrana (Den. and Schiff.) in California. Agric Entomol 14:225–238

    Article  Google Scholar 

  • Hafiz NA (2006) Use of life tables to assess host plant resistance in cowpea to Aphis craccivora Koch (Homoptera: Aphididae). Ass Univ Bull Environ Res 9:1–6

    Google Scholar 

  • Hommay G, Gertz C, Kienlen JC, Pizzol J, Chavigny P (2002) Comparison between the control efficacy of Trichogramma evanescens Westwood and of two Trichogramma cacoeciae Marchal strains against vine moth (Lobesia botrana Den. & Schiff.) depending on their release density. Biocontrol Sci Tech 12:569–581

    Article  Google Scholar 

  • Ioriatti C, Anfora G, Tasin M, de Cristofaro A, Witzgall P, Lucchi A (2011) Chemical ecology and management of Lobesia botrana (Lepidoptera: Tortricidae). J Econ Entomol 104:1125–1137

    Article  CAS  PubMed  Google Scholar 

  • Karlsson B (1989) Fecundity in butterflies: adaptations and constraints. PhD dissertation, University of Stockholm

  • McDonald RS, Borden JH (1995) The relationship of age and ovarian development to mating of Delia antiqua (Diptera: Anthomyiidae). Physiol Entomol 20:155–163

    Article  Google Scholar 

  • Michalczyk M, Macura R, Matuszak I (2009) The effect of air-drying, freeze-drying and storage on the quality and antioxidant activity of some selected berries. J Food Process Preserv 33:11–21

    Article  CAS  Google Scholar 

  • Mondy N, Corio-Costet M-F (2000) Response to dietary phytopathogenic fungus (Botrytis cinerea) in grape berry moth (Lobesia botrana): the significance of fungus sterols. J Insect Physiol 46:1557–1564

    Article  CAS  PubMed  Google Scholar 

  • Moreau J, Benrey B, Thiéry D (2006a) Assessing larval food quality for phytophagous insects: are facts as simple as it appears? Funct Ecol 20:592–600

    Article  Google Scholar 

  • Moreau J, Benrey B, Thiéry D (2006b) Grape variety affects larval performance and also female reproductive performance of the European Grapevine moth (Lobesia botrana). Bull Entomol Res 96:205–212

    Article  CAS  PubMed  Google Scholar 

  • Moreau J, Arruego X, Benrey B, Thiéry D (2006c) Parts of Vitis vinifera berries cv. Cabernet Sauvignon modifies larval and female fitness in the European grapevine moth. Entomol Exp Appl 119:93–99

    Article  Google Scholar 

  • Moreau J, Thiéry D, Troussard JP, Benrey B (2007) Reproductive output of females and males from natural populations of European grapevine moth (Lobesia botrana) occurring on different grape varieties. Ecol Entomol 32:747–753

    Article  Google Scholar 

  • Moreau J, Rahme J, Benrey B, Thiery D (2008) Larval host plant origin modifies the adult oviposition preference of the female European grapevine moth Lobesia botrana. Naturwissenschaften 95:317–324

    Article  CAS  PubMed  Google Scholar 

  • Moreau J, Richard A, Benrey B, Thiéry D (2009) Host plant cultivar of the grapevine moth Lobesia botrana affects the life history traits of an egg parasitoid. Biol Control 50:117–122

    Article  Google Scholar 

  • Morrison RK (1985) Trichogramma spp. In: Singh P, Moore RF (eds) Handbook of insect rearing, vol 1. Elsevier, Amsterdam, pp 413–417

    Google Scholar 

  • Muller K, Thiéry D, Moret Y, Moreau J (2015) Male larval nutrition affects adult reproductive success in wild European grapevine moth (Lobesia botrana). Behav Ecol Sociobiol 69:39–47

    Article  Google Scholar 

  • Ortega-Lopez V, Amo-Salas M, Ortiz-Barredi A, Diez-Navajas AM (2014) Male flight phenology of the European grapevine moth Lobesia botrana (Lepidoptera: Tortricidae) in different wine-growing regions in Spain. Bull Entomol Res 104:566–575

    Article  CAS  PubMed  Google Scholar 

  • Papaj DR (2000) Ovarian dynamics and host use. Annu Rev Entomol 45:423–448

    Article  CAS  PubMed  Google Scholar 

  • Pieri P, Fermaud M (2005) Effects of defoliation on temperature and wetness of grapevine berries. In: 7th International Symposium on Grapevine Physiology and Biotechnology, University of California, Davis, CA. Acta Hortic 689:109–116

  • Pizzol J, Pintureau B, Khoualdia O, Desneux N (2010) Temperature dependent differences in biological traits between two strains of Trichogramma cacoeciae (Hym., Trichogrammatidae). J Pest Sci 83:447–452

    Article  Google Scholar 

  • Pizzol J, Desneux N, Wajnberg E, Thiéry D (2012) Parasitoid and host egg ages have independent impact on various biological traits in a Trichogramma species. J Pest Sci 85:489–496

    Article  Google Scholar 

  • R Development Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/. Accessed 24 February 2015

  • Rati C (2001) Hot air and freeze-drying of high-value foods: a review. J Food Engin 49:311–319

    Article  Google Scholar 

  • Reda Abd el-Monsef AI (2004) Biological control of grape berry moths Eupoecilia ambiguella HB. and Lobesia botrana Den. and Schiff. (Lepidoptera Tortricidae) by using egg parasitoids of the genus Trichogramma. PhD dissertation, Universität Giesen. Accesed 06/2015 at: http://geb.uni-giessen.de/geb/volltexte/2004/1469/pdf/IbrahimReda-2004-03-29.pdf

  • Roehrich R, Boller E (1991) Tortricids in vineyards. In: Van der Gesst LPS, Evenhuis HH (eds) Tortricid pests, their biology natural enemies and control. Elsevier, Amsterdam, pp 507–514

    Google Scholar 

  • Roff DA (2002) Life history evolution. Sinauer Associates Inc, Sunderland

    Google Scholar 

  • Roriz V, Oliveira L, Garcia P (2006) Host suitability and preference studies of Trichogramma cordubensis (Hymenoptera: Trichogrammatidae). Biol Control 36:331–336

    Article  Google Scholar 

  • Rouzes R, Ravidat ML, Delbac L, Thiéry D (2012) The spotted wing drosophila (Drosophila suzukii) entered the drosophila communities in the French Sauternes Vineyard. J Int Sci Vigne Vin 46:145–147

    Google Scholar 

  • Samih MA, Izadi H (2006) Age specific reproduction parameters of cotton whitefly (Bemisia tabaci) and silverleaf whitefly (B. argentifolii) on cotton and rapeseed. Int J Agr Biol 8:302–305

    Google Scholar 

  • Savopoulou-Soultani M, Tzanakakis ME (1988) Development of Lobesia botrana (Lepidoptera: Tortricidae) on grapes and apples infected with the fungus Botrytis cinerea. Environ Entomol 17:1–6

    Article  Google Scholar 

  • Schmidt JM (1994) Host recognition and acceptance by Trichogramma. In: Wajnberg E, Hassan SA (eds) Biological control with egg parasitoids. CAB International, Wallingford, pp 165–200

    Google Scholar 

  • Slansky F Jr, Rodriguez JG (1987) Nutritional ecology of insects, mites, spiders, and related invertebrates: An overview. In: Slansky F Jr, Rodriguez JG (eds) Nutritional ecology of insects. Wiley, New York, pp 1–69

    Google Scholar 

  • Swever BL, Raikhel AS, Sappington TW, Shirk P, Iatrou K (2005) Vitellogenesis and post-vitellogenic maturation of the insect ovarian follicle. In: Gilbert LI, Iatrou K, Gill SS (eds) Comprehensive molecular insect science, 1. Elsevier, Boston, p 463

    Google Scholar 

  • Tammaru T, Javois J (2000) Responses of ovipositing moths (Lepidoptera: Geometridae) to host plant deprivation: Life-history aspects and implications for population dynamics. Environ Entomol 29:1002–1010

    Article  Google Scholar 

  • Thacker JRM (2002) An introduction to arthropod pest control. Cambridge University Press, Cambridge

    Google Scholar 

  • Thiéry D (2008) Les lépidoptères, ravageurs avérés ou potentiels de la vigne en France. In: Kreiter S (ed) Ravageur de la vigne. Féret publication, Bordeaux, pp 211–252

    Google Scholar 

  • Thiéry D (2011) Gaps in knowledge for modern integrated protection in viticulture: lessons from controlling grape berry moths. IOBC-WPRS Bulletin 67:305–311

    Google Scholar 

  • Thiéry D, Moreau J (2005) Relative performance of European grapevine moth (Lobesia botrana) on grapes and other hosts. Oecologia 143:548–557

    Article  PubMed  Google Scholar 

  • Thiéry D, Monceau K, Moreau J (2014) Different emergence phenology of European grapevine moth (Lobesia botrana, Lepidoptera: Tortricidae) on six varieties of grapes. Bull Entomol Res 104:277–287

    Article  PubMed  Google Scholar 

  • Torres-Vila LM, Rodriguez-Molina MC (2002) Egg size variation and its relationship with larval performance in the Lepidoptera: the case of the European grapevine moth Lobesia botrana. Oikos 99:272–283

    Article  Google Scholar 

  • Van Huis A, De Rooy M (1998) The effect of leguminous plant species on Callosobruchus maculatus (Coleoptera: Bruchidae) and its egg parasitoid Uscana lariophaga (Hymenoptera: Trichogrammatidae). Bull Entomol Res 88:93–99

    Article  Google Scholar 

  • Varela LG, Cooper ML, Smith RJ (2013) Can European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae) be eradicated from California? IOBC-WPRS Bulletin 85:95–102

    Google Scholar 

  • Vogelweith F, Thiéry D, Quaglietti B, Moret Y, Moreau J (2011) Host plant variation plastically impacts different traits of the immune system of a phytophagous insect. Funct Ecol 25:1241–1247

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by INRA, University of Bourgogne, and a grant from the Regional Council of Bourgogne. The authors thank Marc-Etienne Toulouse for experimental contributions in rearing Lobesia botrana.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Thiéry.

Ethics declarations

Conflict interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Informed consent

This article does not contain any studies with human participants performed by any of the authors.

Additional information

Communicated by T. Zaviezo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreau, J., Monceau, K. & Thiéry, D. Larval food influences temporal oviposition and egg quality traits in females of Lobesia botrana . J Pest Sci 89, 439–448 (2016). https://doi.org/10.1007/s10340-015-0695-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10340-015-0695-6

Keywords

Navigation