Skip to main content
Log in

Effects of stimulation by three-dimensional natural images on prefrontal cortex and autonomic nerve activity: a comparison with stimulation using two-dimensional images

  • Short Report
  • Published:
Cognitive Processing Aims and scope Submit manuscript

Abstract

Empirical evidence suggests that three-dimensional (3D) images of nature promote physiological relaxation in humans by providing more realistic effects compared with two-dimensional (2D) images. However, no studies have evaluated the physiological relaxation effects of nature-derived 3D images on prefrontal cortex and autonomic nerve activity. The present study aimed to clarify the physiological relaxation effects of visual stimulation by 3D flower images on prefrontal cortex and autonomic nerve activity. Nineteen male university students (22.2 ± 0.6 years) were presented with 3D and 2D images of the water lily for 90 s. Prefrontal cortex activity was measured using near-infrared spectroscopy, while autonomic nerve activity was measured using heart rate variability (HRV). Psychological effects were determined using a modified semantic differential method (SD). Compared with visual stimulation by 2D images, that by 3D images resulted in a significant decrease in oxyhemoglobin concentration in the right prefrontal cortex, lower sympathetic activity as calculated by the ratio of the low-frequency to high-frequency HRV component, and a significantly greater realistic feeling as evidenced by higher SD ratings. In conclusion, visual stimulation by realistic 3D floral images promotes physiological relaxation more effectively than the corresponding 2D image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Barfield W, Zeltzer D, Sheridan T, Slater M (1995) Presence and performance within virtual environments. In: Barfield W, Furness TA (eds) Virtual environments and advanced interface design. Oxford University Press, New York, pp 473–513

  • Brunet M et al (2002) A new hominid from the Upper Miocene of Chad, Central Africa. Nature 418:145–151. doi:10.1038/nature00879

    Article  PubMed  CAS  Google Scholar 

  • Fox PT, Raichle ME (1986) Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. PNAS 83(4):1140–1144

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Freean J, Avons S (2000) Focus group exploration of presence through advanced broadcast services. In: Proceedings of SPIE the International Society for Optical Engineering, pp 530–539

  • Gorini A, Mosso JL, Mosso D, Pineda E, Ruiz NL, Ramiez M, Morales JL, Riva G (2009) Emotional response to virtual reality exposure across different cultures: the role of the attribution process. Cyberpsychol Behav 12(6):699–705. doi:10.1089/cpb.2009.0192

    Article  PubMed  Google Scholar 

  • Hikosaka K, Watanabe M (2000) Delay activity of orbital and lateral prefrontal neurons of the monkey varying with different rewards. Cereb Cortex 10(3):263–271

    Article  PubMed  CAS  Google Scholar 

  • Hoffman HG, Sharar SR, Coda B, Everett JJ, Ciol M, Richards T, Patterson DR (2004) Manipulating presence influences the magnitude of virtual reality analgesia. Pain 111(1–2):162–168. doi:10.1016/j.pain.2004.06.013

    Article  PubMed  Google Scholar 

  • Homae F (2013) A brain of two halves: insights into interhemispheric organization provided by near-infrared spectroscopy. NeuroImage. doi:10.1016/j.neuroimage.2013.06.023

    PubMed  Google Scholar 

  • Hoshi Y, Kobayashi N, Tamura M (2001) Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J Appl Physiol 90(5):1657–1662

    PubMed  CAS  Google Scholar 

  • Igarashi M, Song C, Ikei H, Miyazaki Y (2014a) Effects of olfactory stimulation with perilla essential oil on prefrontal cortex activity. J Altern Complement Med. doi:10.1089/acm.2014.0100

    Google Scholar 

  • Igarashi M, Song C, Ikei H, Miyazaki Y (2014b) Effect of stimulation by foliage plant display images on prefrontal cortex activity: a comparison with stimulation using actual foliage plants. J Neuroimaging. doi:10.1111/jon.12078

    PubMed  Google Scholar 

  • Kodama T, Hikosaka K, Honda Y, Kojima T, Watanabe M (2014) Higher dopamine release induced by less rather than more preferred reward during a working memory task in the primate prefrontal cortex. Behav Brain Res 266:104–107. doi:10.1016/j.bbr.2014.02.009

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Park BJ, Tsunetsugu Y, Kagawa T, Miyazaki Y (2009) Restorative effects of viewing real forest landscapes, based on a comparison with urban landscapes. Scand J For Res 24:227–234. doi:10.1080/02827580902903341

    Article  Google Scholar 

  • Lee J, Park BJ, Tsunetsugu Y, Ohira T, Kagawa T, Miyazaki Y (2011) Effect of forest bathing on physiological and psychological responses in young Japanese male subjects. Public Health 125:93–100. doi:10.1016/j.puhe.2010.09.005

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Li Q, Tyrväinen L, Tsunetsugu Y, Park BJ, Kagawa T, Miyazaki Y (2012) Nature therapy and preventive medicine. Public health—social and behavioral health. InTech Croatia. doi:10.5772/37701

    Google Scholar 

  • Lee J et al (2014) Influence of forest therapy on cardiovascular relaxation in young adults. Evid Based Complement Alternat Med 2014:834360. doi:10.1155/2014/834360

    PubMed  PubMed Central  Google Scholar 

  • Miyazaki Y, Park BJ, Lee J (2011) Nature therapy. In: Osaki M, Braimoh AK, Nakagami K (eds) Designing our future: local perspectives on bioproduction, ecosystems and humanity. United Nations University, New York, pp 407–412

    Google Scholar 

  • Mühlberger A, Wieser MJ, Kenntner-Mabiala R, Pauli P, Wiederhold BK (2007) Pain modulation during drives through cold and hot virtual environments. Cyberpsychol Behav 10(4):516–522. doi:10.1089/cpb.2007.9996

    Article  PubMed  Google Scholar 

  • Naqvi SA, Badruddin N, Malik AS, Hazabbah W, Abdullah B (2013) Does 3D produce more symptoms of visually induced motion sickness? Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference 2013:6405–6408. doi:10.1109/EMBC.2013.6611020

  • Osgood CE, Suci GJ, Tannenbaum P (1957) The measurement of meaning. University of Illinois Press, Champaign

    Google Scholar 

  • Pagani M et al (1986) Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res 59:178–193. doi:10.1161/01.RES.59.2.178

    Article  PubMed  CAS  Google Scholar 

  • Park BJ, Tsunetsugu Y, Kasetani T, Hirano H, Kagawa T, Sato M, Miyazaki Y (2007) Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest)–using salivary cortisol and cerebral activity as indicators. J Physiol Anthropol 26:123–128. doi:10.2114/jpa2.26.123

    Article  PubMed  Google Scholar 

  • Park BJ, Tsunetsugu Y, Ishii H, Furuhashi S, Hirano H, Kagawa T, Miyazaki Y (2008) Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest) in a mixed forest in Shinano Town, Japan. Scand J For Res 23:278–283. doi:10.1080/02827580802055978

    Article  Google Scholar 

  • Park BJ, Tsunetsugu Y, Kasetani T, Morikawa T, Kagawa T, Miyazaki Y (2009) Physiological effects of forest recreation in a young conifer forest in Hinokage Town, Japan. Silv Fenn 43:291–301. doi:10.14214/sf.213

    Google Scholar 

  • Park BJ, Tsunetsugu Y, Kasetani T, Kagawa T, Miyazaki Y (2010) The physiological effects of Shinrin-yoku (taking in the forest atmosphere or forest bathing): evidence from field experiments in 24 forests across. Jpn Environ Health Prev Med 15:18–26. doi:10.1007/s12199-009-0086

    Article  Google Scholar 

  • Park BJ, Furuya K, Kasetani T, Takayama N, Kagawa T, Miyazaki Y (2011) Relationship between psychological responses and physical environment in forest settings. Landsc Urb Plan 102:24–32. doi:10.1016/j.landurbplan.2011.03.005

    Article  Google Scholar 

  • Rasmussen P, Dawson E, Nybo L, van Lieshout J, Secher N, Gjedde A (2007) Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans. J Cereb Blood Flow Metab 27:1082–1093

    PubMed  CAS  Google Scholar 

  • Riva G, Mantovani F, Capideville CS, Preziosa A, Morganti F, Villani D, Gaggioli A, Botella C, Alcaniz M (2007) Affective interactions using virtual reality: the link between presence and emotions. Cyberpsychol Behav 10(1):45–56. doi:10.1089/cpb.2006.9993

    Article  PubMed  Google Scholar 

  • Schmitt YS, Hoffman HG, Blough DK, Patterson DR, Jensen MP, Soltani M, Carrougher GJ, Nakamura D, Sharar SR (2011) A randomized, controlled trial of immersive virtual reality analgesia, during physical therapy for pediatric burns. Burns: J Int Soc Burn Inj 37(1):61–68. doi:10.1016/j.burns.2010.07.007

    Article  Google Scholar 

  • Solimini AG (2013) Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness. PLoS ONE 8:e56160. doi:10.1371/journal.pone.0056160

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Task force of the European society of cardiology and the North American society of pacing and electrophysiology (1996) Heart rate variability standards of measurement, physiological interpretation and clinical use. Circulation 93:1043–1065

    Article  Google Scholar 

  • Torricelli A, Contini D, Pifferi A, Caffini M, Re R, Zucchelli L, Spinelli L (2013) Time domain functional NIRS imaging for human brain mapping. NeuroImage. doi:10.1016/j.neuroimage.2013.05.106

    PubMed  Google Scholar 

  • Tsunetsugu Y, Park BJ, Ishii H, Hirano H, Kagawa T, Miyazaki Y (2007) Physiological effects of Shinrin-yoku (taking in the atmosphere of the forest) in an old-growth broadleaf forest in Yamagata Prefecture, Japan. J Physiol Anthropol 26:135–142. doi:10.2114/jpa2.26.135

    Article  PubMed  Google Scholar 

  • Tsunetsugu Y, Lee J, Park BJ, Tyrväinen L, Kagawa T, Miyazaki Y (2013) Physiological and psychological effects of viewing urban forest landscapes assessed by multiple measurement. Landsc Urb Plan 113:90–93. doi:10.1016/j.landurbplan.2013.01.014

    Article  Google Scholar 

  • Watanabe M, Hikosaka K, Sakagami M, Shirakawa S (2005) Functional significance of delay-period activity of primate prefrontal neurons in relation to spatial working memory and reward/omission-of-reward expectancy. Exp Brain Res 166(2):263–276. doi:10.1007/s00221-005-2358-y

    Article  PubMed  Google Scholar 

  • Watanabe M, Hikosaka K, Sakagami M, Shirakawa S (2007) Reward expectancy-related prefrontal neuronal activities: are they neural substrates of “affective” working memory? Cortex 43(1):53–64

    Article  PubMed  Google Scholar 

  • Wong F, Nakamura M, Alexiou T, Brodecky V, Walker A (2009) Tissue oxygenation index measurement using spatially resolved spectroscopy correlates with changes in cerebral blood flow in newborn lambs. Intensive Care Med 35:1464–1470. doi:10.1007/s00134-009-1486-4

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Misako Komatsu for valuable contributions to data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshifumi Miyazaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Igarashi, M., Yamamoto, T., Lee, J. et al. Effects of stimulation by three-dimensional natural images on prefrontal cortex and autonomic nerve activity: a comparison with stimulation using two-dimensional images. Cogn Process 15, 551–556 (2014). https://doi.org/10.1007/s10339-014-0627-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10339-014-0627-z

Keywords

Navigation