Skip to main content
Log in

Effect of Interface Area on Nonlinear Magnetoelectric Resonance Response of Layered Multiferroic Composite Ring

  • Published:
Acta Mechanica Solida Sinica Aims and scope Submit manuscript

Abstract

Multiferroic composite structures are widely used in sensing, driving and communication. The study of their magnetoelectric (ME) behavior under various excitations is crucial. This study investigates the nonlinear ME influence of a multilayer composite ring structure consisting of Terfenol-D (TD) magnetostrictive and lead zirconate titanate (PZT) piezoelectric rings utilizing a multiphysics field modeling framework based on the fully coupled finite element method. The ME coupling coefficient of the PZT/TD concentric composite ring is predicted using the linear piezoelectric constitutive model and the nonlinear magnetostrictive constitutive model, which is congruent to the experimental data. The effect of the interface area of a trilayered structure on the coupling performance at the resonant frequency is investigated, considering the magnitude and frequency of the magnetic field and keeping the material ratio constant. The ME coupling coefficient of a trilayered structure is larger than that of a bilayered structure with the same material ratio, and the maximum ME coupling coefficient of a trilayered structure increases nonlinearly with the increase in the interface area. At the resonant frequency, the structure's ME coupling performance is considerably improved. An optimization technique based on structural geometric design and magnetic field control is presented to optimize the ME coupling coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Nan CW, Bichurin MI, Dong S, Viehland D, Srinivasan G. Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J Appl Phys. 2008;103:031101.

    Article  Google Scholar 

  2. Ramesh R, Spaldin NA. Multiferroics: progress and prospects in thin films. Nat Mater. 2007;6:21–9.

    Article  Google Scholar 

  3. Spaldin NA, Ramesh R. Advances in magnetoelectric multiferroics. Nat Mater. 2019;18(3):203–12.

    Article  Google Scholar 

  4. Spaldin NA. Multiferroics: past, present, and future. MRS Bull. 2017;42(5):385–9.

    Article  Google Scholar 

  5. Wang Y, Hu JM, Lin YH, Nan CW. Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2010;2(2):61–8.

    Article  Google Scholar 

  6. Cheng YX, Peng B, Hu ZQ, Zhou ZY, Liu M. Recent development and status of magnetoelectric materials and devices. Phys Lett A. 2018;382(41):3018–25.

    Article  Google Scholar 

  7. Nan TX, Lin H, Gao Y, Matyushov A, Yu GL, Chen HH, Sun N, Wei SJ, Wang ZG, Li MH, Wang XJ, Belkessam A, Guo RD, Chen B, Zhou J, Qian ZY, Hui Y, Rinaldi M, McConney ME, Howe BM, Hu ZQ, Jones JG, Brown GJ, Sun NX. Acoustically actuated ultra-compact NEMS magnetoelectric antennas. Nat Commun. 2017;8(1):1–7.

    Article  Google Scholar 

  8. Pang Y, Liu JX, Wang YS, Fang DN. Wave propagation in piezoelectric/piezomagnetic layered periodic composites. Acta Mech Solida Sin. 2008;21(6):483–90.

    Article  Google Scholar 

  9. Ge XH, Ji H, Li Y, Chen JK, Wang YG. Diameter and sequence effects on magnetoelectric effect in FeCo/Pb(Zr, Ti)O-3/Ni trilayered long cylindrical composite structures. J Alloys Compd. 2018;752:303–7.

    Article  Google Scholar 

  10. Pan DA, Tian JJ, Zhang SG, Sun JS, Volinsky AA, Qiao LJ. Geometry effects on magnetoelectric performance of layered Ni/PZT composites. Mater Sci Eng B Adv. 2009;163(2):114–9.

    Article  Google Scholar 

  11. Zhang YW, Wang SL, Ni ZY, Fang ZW, Zang J, Fang B. Integration of a nonlinear vibration absorber and levitation magnetoelectric energy harvester for whole-spacecraft systems. Acta Mech Solida Sin. 2019;32(3):298–309.

    Article  Google Scholar 

  12. Zheng XJ, Sun L. A nonlinear constitutive model of magneto-thermo-mechanical coupling for giant magnetostrictive materials. J Appl Phys. 2006;100:063906.

    Article  Google Scholar 

  13. Filippov DA, Bichurin MI, Nan CW, Liu JM. Magnetoelectric effect in hybrid magnetostrictive–piezoelectric composites in the electromechanical resonance region. J Appl Phys. 2005;97:113910.

    Article  Google Scholar 

  14. Bai G, Xie QY, Qin XS, Xu J, Yan XB, Gao CF. A generalized thermodynamic frame of magneto-electric-caloric coupling effects of single phase epitaxial multiferroic thin films. Ferroelectrics. 2018;531(1):186–95.

    Article  Google Scholar 

  15. Kumar A, Chelvane JA, Arockiarajan A. Enhanced self-biased magnetoelectric response in novel distributed disc structure Ni/PZT composite. Mater Lett. 2021;305:130834.

    Article  Google Scholar 

  16. Zhang R, Wu GJ, Zhang N. Equivalent circuit method for resonant magnetoelectric effect in disk-shaped laminated composites. Eur Phys J Appl Phys. 2015;69:10602.

    Article  Google Scholar 

  17. Zhang CL, Chen WQ, Li JY, Yang JS. Two-dimensional analysis of magnetoelectric effects in multiferroic laminated plates. IEEE Trans Ultrasonics Ferr. 2009;56(5):1046–53.

    Article  Google Scholar 

  18. Zhang CL, Yang JS, Chen WQ. Magnetoelectric effects in laminated multiferroic shells. Int J Appl Electromagn. 2008;28:441–54.

    Article  Google Scholar 

  19. Zhang CL, Zhang LL, Shen XD, Chen WQ. Enhancing magnetoelectric effect in multiferroic composite bilayers via flexoelectricity. J Appl Phys. 2016;119(13):134102.

    Article  Google Scholar 

  20. Chen Q, Chen WQ, Wang GN. Fully-coupled electro-magneto-elastic behavior of unidirectional multiphased composites via finite-volume homogenization. Mech Mater. 2021;154:103553.

    Article  Google Scholar 

  21. Zhang CL, Chen WQ. Magnetoelectric coupling in multiferroic laminated plates with giant magnetostrictive material layers. J Appl Phys. 2011;110:124514.

    Article  Google Scholar 

  22. Chavez AC, Lopez M, Youssef G. Converse magneto-electric coefficient of concentric multiferroic composite ring. J Appl Phys. 2016;119:233905.

    Article  Google Scholar 

  23. Yao Z, Wang YE, Keller S, Carman GP. Bulk acoustic wave-mediated multiferroic antennas: architecture and performance bound. IEEE Trans Antennas Propag. 2015;63(8):3335–44.

    Article  MathSciNet  Google Scholar 

  24. Shen HQ, Wang YG, Xie D, Cheng JH. Magnetoelectric effect in FeCo/PMN-PT/FeCo trilayers prepared by electroless deposition of FeCo on PMN-PT crystals with various orientations. J Alloys Compd. 2014;610:11–4.

    Article  Google Scholar 

  25. Bi K, Wang YG, Pan DA, Wu W. Nickel and lead zirconium titanate multi-layered magnetoelectric composites prepared by electroless deposition. Mod Phys Lett B. 2011;25(10):723–9.

    Article  Google Scholar 

  26. Bichurin MI, Viehland D. Magnetoelectricity in composites. Boca Raton: CRC Press; 2011.

    Book  Google Scholar 

  27. Wang HM, Pan E, Chen WQ. Enhancing magnetoelectric effect via the curvature of composite cylinder. J Appl Phys. 2010;107(9):093514.

    Article  Google Scholar 

  28. Youssef G, Newacheck S, Yousuf LS. Insights into the displacement field in magnetoelectric composites. J Intell Mater Syst Struct. 2020;31(3):436–44.

    Article  Google Scholar 

  29. Wan YP, Fang DN, Hwang KC. Experimental and theoretical study of the nonlinear response of agiant magnetostrictive rod. Acta Mech Sin. 2003;19:324–9.

    Article  Google Scholar 

  30. Duenas TA, Hsu L, Carman GP. Magnetostrictive composite material systems analytical experimental. Mater Res Soc Symp Proc. 1997;459:527–43.

    Article  Google Scholar 

  31. Zhou HM, Ou XW, Xiao Y, Qu SX, Wu HP. An analytical nonlinear magnetoelectric coupling model of laminated composites under combined pre-stress and magnetic bias loadings. Smart Mater Struct. 2013;22:035018.

    Article  Google Scholar 

  32. Zadov B, Elmalem A, Paperno E, Gluzman I, Nudelman A, Levron D, Grosz A. Modeling of small DC magnetic field response in trilayer magnetoelectric laminate composites. Adv Condens Mater Phys. 2012;2012:383728.

    Google Scholar 

  33. Krishnan KM. Fundamentals and applications of magnetic materials. Oxford: OUP Press; 2016.

    Book  Google Scholar 

  34. Jiles D. Introduction to magnetism and magnetic materials. Boca Raton: CRC Press; 2015.

    Book  Google Scholar 

  35. Krishnan KM. Introduction to magnetism and magnetic materials. Boca Raton: CRC Press; 2016.

    Google Scholar 

  36. Balanis CA. Advanced engineering electromagnetics. New York: Wiley; 1989.

    Google Scholar 

  37. Wen JB, Zhang JJ, Gao YW. Multiple broadband magnetoelectric response in Terfenol-D/PZT structure. Chin Phys B. 2018;27:027702.

    Article  Google Scholar 

  38. Stampfli R, Newacheck S, Youssef G. Fully-coupled computational modeling of the dynamic response of 1–3 multiferroic composite structures. Int J Mech Sci. 2021;191:106086.

    Article  Google Scholar 

  39. Youssef G, Newacheck S, Lopez M. Mapping magnetoelastic response of Terfenol-D ring structure. Appl Phys Lett. 2017;110(19):1–6.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2018YFB0703500) and the Natural Science Foundation of Beijing (3202001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianchun Long.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Long, L. & Li, W. Effect of Interface Area on Nonlinear Magnetoelectric Resonance Response of Layered Multiferroic Composite Ring. Acta Mech. Solida Sin. 35, 765–774 (2022). https://doi.org/10.1007/s10338-022-00324-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10338-022-00324-5

Keywords

Navigation