Skip to main content
Log in

Liquid Chromatography at Critical Conditions in Polymer Analysis: A Perspective

  • Perspective Article
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Liquid chromatography at critical conditions is one of the major chromatographic techniques for characterization of complex polymers beyond mere total molar mass. In this perspective, different approaches of analyses using critical conditions are elaborated. Strengths, opportunities, and caveats associated with different LCCC approaches are discussed. Finally, the future challenges and opportunities are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Copyright 1999, Reproduced with permission of John Wiley and Sons

Fig. 2

Copyright 2021, Reproduced with permission of Elsevier Science Ltd., Oxford, UK

Fig. 3

Copyright 2019, Reproduced with permission of American Chemical Society

Fig. 4

Copyright 2016, Reproduced with permission of Elsevier Science Ltd., Oxford, UK

Similar content being viewed by others

References

  1. Striegel AM, Yau WW, Kirkland JJ, Bly DD (2009) Modern size-exclusion liquid chromatography: practice of gel permeation and gel filtration chromatography, vol 2. Wiley, Hoboken

    Book  Google Scholar 

  2. Uliyanchenko E, van der Wal S, Schoenmakers PJ (2012) Challenges in polymer analysis by liquid chromatography. Polym Chem 3(9):2313–2335

    Article  CAS  Google Scholar 

  3. Malik MI, Pasch H (2021) Chapter 1—basic principles of size exclusion and liquid interaction chromatography of polymers. In: Malik MI, Mays J, Shah MR (eds) Molecular Characterization of polymers. Elsevier, pp 1–59

    Google Scholar 

  4. Pasch H, Trathnigg B (2013) Multidimensional HPLC of polymers. Springer, Berlin-Heidelberg-New York

    Book  Google Scholar 

  5. Malik MI, Pasch H (2014) Novel developments in the multidimensional characterization of segmented copolymers. Prog Polym Sci 39(1):87–123

    Article  CAS  Google Scholar 

  6. Striegel AM (2020) Method development in interaction polymer chromatography. TrAC Trends Anal Chem 130:115990

    Article  CAS  Google Scholar 

  7. Meunier DM, Wade JH, Janco M, Cong R, Gao W, Li Y, Mekap D, Wang G (2021) Recent advances in separation-based techniques for synthetic polymer characterization. Anal Chem 93(1):273–294

    Article  PubMed  CAS  Google Scholar 

  8. Baumgaertel A, Altuntaş E, Schubert US (2012) Recent developments in the detailed characterization of polymers by multidimensional chromatography. J Chromatogr A 1240:1–20

    Article  PubMed  CAS  Google Scholar 

  9. Macko T, Hunkeler D (2003) Liquid chromatography under critical and limiting conditions: a survey of experimental systems for synthetic polymers. Adv Polym Sci 163:61–136

    CAS  Google Scholar 

  10. Chang TY, Lee HC, Lee W, Park S, Ko CH (1999) Polymer characterization by temperature-gradient interaction chromatography. Macromol Chem Phys 200(10):2188–2204

    Article  CAS  Google Scholar 

  11. Lee H, Yang J, Chang T (2017) Branching analysis of star-shaped polybutadienes by temperature gradient interaction chromatography-triple detection. Polymer 112:71–75

    Article  CAS  Google Scholar 

  12. Radke W, Lee S, Chang T (2010) Temperature gradient interaction chromatography of polymers: a molecular statistical model. J Sep Sci 33(22):3578–3583

    Article  PubMed  CAS  Google Scholar 

  13. Bashir MA, Brull A, Radke W (2005) Fast determination of critical eluent composition for polymers by gradient chromatography. Polymer 46(10):3223–3229

    Article  CAS  Google Scholar 

  14. Brun Y, Alden P (2002) Gradient separation of polymers at critical point of adsorption. J Chromatogr A 966(1–2):25–40

    Article  PubMed  CAS  Google Scholar 

  15. Brun Y, Foster P (2010) Characterization of synthetic copolymers by interaction polymer chromatography: separation by microstructure. J Sep Sci 33(22):3501–3510

    Article  PubMed  CAS  Google Scholar 

  16. Malik MI (2020) Critical parameters of liquid chromatography at critical conditions in context of poloxamers: pore diameter, mobile phase composition, temperature and gradients. J Chromatogr A 1609:460440

    Article  PubMed  CAS  Google Scholar 

  17. Khatoon R, Rahim S, Abdul-Karim R, Musharraf SG, Malik MI (2019) Characterization of Polystyrene-block-Poly(2-vinyl pyridine) copolymers and blends of their homopolymers by liquid chromatography at critical conditions. Macromolecules 52(20):7688–7695

    Article  CAS  Google Scholar 

  18. Park I, Park S, Cho D, Chang T, Kim E, Lee K, Kim YJ (2003) Effect of block copolymer chain architecture on chromatographic retention. Macromolecules 36(22):8539–8543

    Article  CAS  Google Scholar 

  19. Malik MI, Lee S, Chang T (2016) Comprehensive two-dimensional liquid chromatographic analysis of poloxamers. J Chromatogr A 1442:33–41

    Article  PubMed  CAS  Google Scholar 

  20. Malik MI, Mahboob T, Ahmed S (2014) Characterization of poly(2-vinylpyridine)-block-poly(methyl methacrylate) copolymers and blends of their homopolymers by liquid chromatography at critical conditions. Anal Bioanal Chem 406(25):6311–6317

    Article  PubMed  CAS  Google Scholar 

  21. Abrar S, Trathnigg B (2010) Separation of nonionic surfactants according to functionality by hydrophilic interaction chromatography and comprehensive two-dimensional liquid chromatography. J Chromatogr A 1217(52):8222–8229

    Article  PubMed  CAS  Google Scholar 

  22. Jiang W, Khan S, Wang Y (2005) Retention behaviors of block copolymers in liquid chromatography at the critical condition. Macromolecules 38(17):7514–7520

    Article  CAS  Google Scholar 

  23. Lee W, Park S, Chang T (2001) Liquid chromatography at the critical condition for polyisoprene using a single solvent. Anal Chem 73(16):3884–3889

    Article  PubMed  CAS  Google Scholar 

  24. Lee W, Cho D, Chang T, Hanley KJ, Lodge TP (2001) Characterization of Polystyrene-b-polyisoprene Diblock copolymers by liquid chromatography at the chromatographic critical condition. Macromolecules 34(7):2353–2358

    Article  CAS  Google Scholar 

  25. Falkenhagen J, Much H, Stauf W, Müller AHE (2000) Characterization of Block-Copolymers by Liquid Adsorption Chromatography at Critical Conditions. 1. Diblock Copolymers. Macromolecules 33(10):3687–3693

    Article  CAS  Google Scholar 

  26. Lee S, Lee H, Thieu L, Jeong Y, Chang T, Fu C, Zhu Y, Wang Y (2013) HPLC Characterization of Hydrogenous Polystyrene-block-deuterated polystyrene utilizing the isotope effect. Macromolecules 46(22):9114–9121

    Article  CAS  Google Scholar 

  27. Skvortsov AM, Gorbunov AA (1990) Achievements and uses of critical conditions in the chromatography of polymers. J Chromatogr 507:487–496

    Article  CAS  Google Scholar 

  28. Berek D (2010) Two-dimensional liquid chromatography of synthetic polymers. Anal Bioanal Chem 396(1):421–441

    Article  PubMed  CAS  Google Scholar 

  29. Beaudoin E, Favier A, Galindo C, Lapp A, Petit C, Gigmes D, Marque S, Bertin D (2008) Reduced sample recovery in liquid chromatography at critical adsorption point of high molar mass polystyrene. Eur Polym J 44(2):514–522

    Article  CAS  Google Scholar 

  30. Abdulahad AI, Ryu CY (2009) Liquid chromatography at the critical condition: Thermodynamic significance and influence of pore size. J Polym Sci, Part B Polym Phys 47(24):2533–2540

    Article  CAS  Google Scholar 

  31. Berek D (2016) Critical assessment of “critical” liquid chromatography of block copolymers. J Sep Sci 39(1):93–101

    Article  PubMed  CAS  Google Scholar 

  32. Macko T, Hunkeler D, Berek D (2002) Liquid chromatography of synthetic polymers under critical conditions. The case of single eluents and the role of ϑ conditions. Macromolecules 35(5):1797–1804

    Article  CAS  Google Scholar 

  33. Im K, Park H-W, Kim Y, Ahn S, Chang T, Lee K, Lee H-J, Ziebarth J, Wang Y (2008) Retention behavior of star-shaped polystyrene near the chromatographic critical condition. Macromolecules 41(9):3375–3383

    Article  CAS  Google Scholar 

  34. Pasch H, Esser E, Kloninger C, Iatrou H, Hadjichristidis N (2001) Chromatographic investigations of macromolecules in the critical range of liquid chromatography, 14. Analysis of Miktoarm Star (μ-Star) polymers. Macromol Chem Phys 202(8):1424–1429

    Article  Google Scholar 

  35. Irfan M, Oh J, Musharraf SG, Shah MR, Ahmed S, Malik MI (2016) Synthesis and meticulous molecular, morphological and thermal characterization of linear and star-shaped polycaprolactones. RSC Adv 6(100):98117–98127

    Article  CAS  Google Scholar 

  36. Bhayo AM, Abdul-Karim R, Musharraf SG, Malik MI (2018) Synthesis and characterization of 4-arm star-shaped amphiphilic block copolymers consisting of poly(ethylene oxide) and poly(ε-caprolactone). RSC Adv 8(50):28569–28580

    Article  CAS  Google Scholar 

  37. Ziebarth JD, Gardiner AA, Wang Y, Jeong Y, Ahn J, Jin Y, Chang T (2016) Comparison of critical adsorption points of ring polymers with linear polymers. Macromolecules 49(22):8780–8788

    Article  Google Scholar 

  38. Lee W, Lee H, Lee HC, Cho D, Chang T, Gorbunov AA, Roovers J (2002) Retention Behavior of linear and ring polystyrene at the chromatographic critical condition. Macromolecules 35(2):529–538

    Article  Google Scholar 

  39. Malik MI, Trathnigg B, Kappe CO (2008) Microwave assisted synthesis and characterization of end functionalized poly(propylene oxide) as model compounds. Eur Polym J 44(1):144–154

    Article  CAS  Google Scholar 

  40. Malik MI, Trathnigg B (2009) Full separation of oligomers in block copolymers of ethylene oxide and propylene oxide. J Sep Sci 32(11):1771–1781

    Article  PubMed  CAS  Google Scholar 

  41. Malik MI, Ahmed H, Trathnigg B (2009) Liquid chromatography under critical conditions: practical applications in the analysis of amphiphilic polymers. Anal Bioanal Chem 393(6–7):1797–1804

    Article  PubMed  CAS  Google Scholar 

  42. Lee H, Chang T, Lee D, Shim MS, Ji H, Nonidez WK, Mays JW (2001) Characterization of Poly(l-lactide)-block-Poly- (ethylene oxide)-block-Poly(l-lactide) Triblock copolymer by liquid chromatography at the critical condition and by MALDI-TOF mass spectrometry. Anal Chem 73(8):1726–1732

    Article  PubMed  CAS  Google Scholar 

  43. Im K, Park H-W, Kim Y, Chung B, Ree M, Chang T (2007) Comprehensive two-dimensional liquid chromatography analysis of a block copolymer. Anal Chem 79(3):1067–1072

    Article  CAS  Google Scholar 

  44. Ahmed H, Trathnigg B (2009) Characterization of poly(ethylene glycol)-b- poly(ε-caprolactone) by two-dimensional liquid chromatography. J Sep Sci 32(9):1390–1400

    Article  PubMed  CAS  Google Scholar 

  45. Batsberg W, Ndoni S, Trandum C, Hvidt S (2004) Effects of poloxamer inhomogeneities on micellization in water. Macromolecules 37(8):2965–2971

    Article  CAS  Google Scholar 

  46. Česlová L, Jandera P, Česla P (2012) A study of the thermodynamics of retention of block (co)oligomers using high-performance liquid chromatography/mass spectrometry. J Chromatogr A 1247:89–98

    Article  PubMed  Google Scholar 

  47. Welerowicz T, Jandera P, Novotná K, Buszewski B (2006) Solvent and temperature gradients in separation of synthetic oxyethylene-oxypropylene block (co)polymers using high-temperature liquid chromatography. J Sep Sci 29(8):1155–1165

    Article  PubMed  CAS  Google Scholar 

  48. Jandera P, Holčapek M, Kolářová L (2000) Retention mechanism, isocratic and gradient-elution separation and characterization of (co)polymers in normal-phase and reversed-phase high-performance liquid chromatography. J Chromatogr A 869(1–2):65–84

    Article  PubMed  CAS  Google Scholar 

  49. Trathnigg B, Malik MI, Pircher N, Hayden S (2010) Liquid chromatography at critical conditions in ternary mobile phases: Gradient elution along the critical line. J Sep Sci 33(14):2052–2059

    Article  PubMed  CAS  Google Scholar 

  50. Cuong NV, Trathnigg B (2010) Adsorption interaction parameter of polyethers in ternary mobile phases: the critical adsorption line. J Sep Sci 33(8):1064–1071

    Article  CAS  Google Scholar 

  51. Malik MI, Trathnigg B, Kappe CO (2009) Amphiphilic polymers based on higher alkylene oxides. Synthesis and characterization by different chromatographic techniques. J Chromatogr A 1216(7):1167–1173

    Article  PubMed  CAS  Google Scholar 

  52. Malik MI, Trathnigg B, Saf R (2009) Characterization of ethylene oxide-propylene oxide block copolymers by combination of different chromatographic techniques and matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. J Chromatogr A 1216(38):6627–6635

    Article  PubMed  CAS  Google Scholar 

  53. Malik MI, Trathnigg B, Bartl K, Saf R (2010) Characterization of polyoxyalkylene block copolymers by combination of different chromatographic techniques and MALDI-TOF-MS. Anal Chim Acta 658(2):217–224

    Article  PubMed  CAS  Google Scholar 

  54. Mlynek M, Radke W (2013) Critical chromatography in ternary solvents. J Chromatogr A 1284:112–117

    Article  PubMed  CAS  Google Scholar 

  55. Gorbunov A, Trathnigg B (2002) Theory of liquid chromatography of mono- and difunctional macromolecules—I. Studies in the critical interaction mode. J Chromatogr A 955(1):9–17

    Article  PubMed  CAS  Google Scholar 

  56. Rappel C, Trathnigg B, Gorbunov A (2003) Liquid chromatography of polyethylene glycol mono- and diesters: functional macromolecules or block copolymers. J Chromatogr A 984:29–43

    Article  PubMed  CAS  Google Scholar 

  57. Hiller W, Sinha P, Hehn M, Pasch H (2014) Online LC-NMR—from an expensive toy to a powerful tool in polymer analysis. Prog Polym Sci 39(5):979–1016

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support by Higher Education Commission of Pakistan under “National Research Program for Universities” against project # 5735 is highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran Malik.

Ethics declarations

Conflict of Interest

There is no conflict to declare.

Ethical Approval

This article does not contain any studies with living organisms.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malik, M.I. Liquid Chromatography at Critical Conditions in Polymer Analysis: A Perspective. Chromatographia 84, 1089–1094 (2021). https://doi.org/10.1007/s10337-021-04096-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-021-04096-x

Keywords

Navigation