Skip to main content
Log in

Validation and Application of Molecularly Imprinted Polymers for SPE/UPLC–MS/MS Detection of Gemifloxacin Mesylate

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

Eight molecularly imprinted polymers (MIPs) were synthesized for the determination of the antibacterial agent gemifloxacin mesylate (GFM). The polymers were prepared using GFM as a template, methacrylic acid (MAA) or 4-vinylpyridine (4-VP) as functional monomers, ethylene glycol dimethacrylate (EGDMA) as a cross linker, 2,2′-azobisisobutyronitrile (AIBN) as an initiator and a mixture of dimethylsulfoxide (DMSO)/acetonitrile (ACN) (1:1, v/v) as a porogen. The optimized polymer was utilized as a solid-phase extraction (SPE) sorbent material for GFM from different matrices. Different loading, washing and elution protocols were investigated. Quantitative analysis of the extracts was performed using a newly developed ultra-performance liquid chromatography–mass spectrometry (UPLC–MS/MS) method on an Acquity BEH C18 column (100 mm × 2.1 mm, particle size of 1.7 µm). The isocratic mobile phase was a mixture of methanol (MeOH)/water (H2O) with 0.1% formic acid (70:30, v/v), the flow rate was 0.3 mL min−1 and the column temperature was 40 °C. Lomefloxacin (LOM) was used as an internal standard. The developed method was validated based on the recommendations of the International Conference on Harmonization (ICH) and was found suitable for the extraction of GFM from a pharmaceutical drug preparation and spiked human urine samples. Recovery % values ranged from 90.24 to 112.8% with relative standard deviation (RSD) of less than 7%.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Haupt K, Mosbach K (2000) Molecularly imprinted polymers and their use in biomimetic sensors. Chem Rev 100(7):2495–2504

    Article  CAS  PubMed  Google Scholar 

  2. Haupt K (2001) Molecularly imprinted polymers in analytical chemistry. Analyst 126(6):747–756

    Article  CAS  PubMed  Google Scholar 

  3. Murray GM, Southard GE (2005) Metal ion selective molecularly imprinted polymers. In: Yan M, Ramström O (eds) Molecularly imprinted materials: science and technology. Marcel Dekker, New York, pp 579–602. https://doi.org/10.1201/9781420030303.ch22

    Chapter  Google Scholar 

  4. He C, Liu F, Li K, Liu H (2006) Molecularly imprinted polymer film grafted from porous silica for selective recognition of testosterone. Anal Lett 39(2):275–286

    Article  CAS  Google Scholar 

  5. Yang HH, Zhang SQ, Tan F, Zhuang ZX, Wang XR (2005) Surface molecularly imprinted nanowires for biorecognition. J Am Chem Soc 127(5):1378–1379

    Article  CAS  PubMed  Google Scholar 

  6. Turiel E, Martín-Esteban A, Tadeo JL (2007) Molecular imprinting-based separation methods for selective analysis of fluoroquinolones in soils. J Chromatogr A 1172(2):97–104

    Article  CAS  PubMed  Google Scholar 

  7. Wang GN, Yang K, Liu HZ, Feng MX, Wang JP (2016) Molecularly imprinted polymer-based solid phase extraction combined high performance liquid chromatography for determination of fluoroquinolones in milk. Anal Methods 8(27):5511–5518

    Article  CAS  Google Scholar 

  8. Benito-Peña E, Urraca JL, Sellergren B, Moreno-Bondi MC (2008) Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stoichiometrically imprinted polymer. J Chromatogr A 1208(1):62–70

    Article  CAS  PubMed  Google Scholar 

  9. Urraca J, Castellari M, Barrios C, Moreno-Bondi M (2014) Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography. J Chromatogr A 1343:1–9

    Article  CAS  PubMed  Google Scholar 

  10. Wu X, Wu L (2015) Molecularly imprinted polymers for the solid-phase extraction of four fluoroquinolones from milk and lake water samples. J Sep Sci 38(20):3615–3621

    Article  CAS  PubMed  Google Scholar 

  11. Wang YF, Wang YG, Ouyang XK, Yang LY (2017) Surface-imprinted magnetic carboxylated cellulose nanocrystals for the highly selective extraction of six fluoroquinolones from egg samples. ACS Appl Mater Interfaces 9(2):1759–1769

    Article  CAS  PubMed  Google Scholar 

  12. Wang N, Wang YF, Omer AM, Ouyang XK (2017) Fabrication of novel surface-imprinted magnetic graphene oxide-grafted cellulose nanocrystals for selective extraction and fast adsorption of fluoroquinolones from water. Anal Bioanal Chem 409(28):6643–6653

    Article  CAS  PubMed  Google Scholar 

  13. Hu ZH, Wang YF, Omer AM, Ouyang XK (2018) Fabrication of ofloxacin imprinted polymer on the surface of magnetic carboxylated cellulose nanocrystals for highly selective adsorption of fluoroquinolones from water. Int J Biol Macromol 107:453–462

    Article  CAS  PubMed  Google Scholar 

  14. Lomaestro BM (2000) Gemifloxacin: a broad-spectrum oral quinolone for treatment of respiratory and urinary tract infections. Formulary 35(12):961

    Google Scholar 

  15. Drlica K, Zhao X (1997) DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol Mol Biol Rev 61(3):377–392

    CAS  PubMed  PubMed Central  Google Scholar 

  16. https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/021158s007lbl.pdf. Accessed 01 Nov 2018

  17. Al-Hadiya BMH, Khady AA, Mostafa GAE (2010) Validated liquid chromatographic-fluorescence method for the quantitation of gemifloxacin in human plasma. Talanta 83:110–116

    Article  CAS  PubMed  Google Scholar 

  18. Kaiser M, Gruenspan LD, Dalla Costa T, Tasso L (2011) Reversed phase liquid chromatography method with fluorescence detection of gemifloxacin in rat plasma and its application to the pharmacokinetic study. J Chromatogr B 879(30):3639–3644

    Article  CAS  Google Scholar 

  19. Abdallah N (2014) HPLC and densitometric TLC methods for simultaneous determination of gemifloxacin with some co-administered drugs in human plasma. J Chromatogr Sep Tech 5(2):1–9. https://doi.org/10.4172/2157-7064.1000220

    Article  CAS  Google Scholar 

  20. Sagirli O, Demirci S, Onal A (2015) A very simple high-performance liquid chromatographic method with fluorescence detection for the determination of gemifloxacin in human breast milk. Luminescence 30(8):1326–1329

    Article  CAS  PubMed  Google Scholar 

  21. Szultkaa M, Krzeminskib R, Walczaka J, Jackowskib M, Buszewski B (2014) Pharmacokinetic study of amoxicillin in human plasma by solid-phase microextraction followed by high-performance liquid chromatography–triple quadrupole mass spectrometry. Biomed Chromatogr 28(2):255–264

    Article  CAS  Google Scholar 

  22. Ranjane PN, Gandhi SV, Kadukar SS, Bothara KG (2010) Stability indicating RP-LC method for the determination of gemifloxacin mesylate. Chromatographia 71(11–12):1113–1117

    Article  CAS  Google Scholar 

  23. Doyle E, Fowles SE, McDonnell DF, McCarthy R, White SA (2000) Rapid determination of gemifloxacin in human plasma by high performance liquid chromatography–tandem mass spectrometry. J Chromatogr B 746(2):191–198

    Article  CAS  Google Scholar 

  24. Roy B, Das A, Bhaumik U, Sarkar AK, Bose A, Mukharjee J, Chakrabarty US, Das AK, Pal TK (2010) Determination of gemifloxacin in different tissues of rat after oral dosing of gemifloxacin mesylate by LC–MS/MS and its application in drug tissue distribution study. J Pharm Biomed Anal 52(2):216–226

    Article  CAS  PubMed  Google Scholar 

  25. Elbashir AA, Saad B, Salhin A, Ali M, Al-Azzam KMM, Aboul-Enein HY (2008) Validated stability indicating assay of gemifloxacin and lomefloxacin in tablet formulations by capillary electrophoresis. J Liq Chromatogr Relat Technol 31(10):1465–1477

    Article  CAS  Google Scholar 

  26. Tavares VF, Patto DCS, Singh AK, Aurora-Prado MS, KedorHackmann ERM, Santoro MIRM (2011) Quantitative determination of gemifloxacin mesylate in tablets by capillary zone electrophoresis and high performance liquid chromatography. Lat Am J Pharm 30(4):746–752

    CAS  Google Scholar 

  27. Jain R, Rather JA (2011) Voltammetric determination of antibacterial drug gemifloxacin in solubilized systems at multi-walled carbon nanotubes modified glassy carbon electrode. Colloids Surf B Biointerfaces 83(2):340–346

    Article  CAS  PubMed  Google Scholar 

  28. El-Shal MA, Attia AK, Abdulla SA (2013) β-Cyclodextrin modified carbon paste electrode for the determination of gemifloxacin and nadifloxacin. J Adv Sci Res 4(2):25–30

    CAS  Google Scholar 

  29. Radi A, Khafagy A, El-shobaky A, El-mezayen H (2013) Anodic voltammetric determination of gemifloxacin using screen-printed carbon electrode. J Pharm Anal 3(2):132–136

    Article  PubMed  Google Scholar 

  30. Abo-talib NF (2013) Ion selective electrodes for stability-indicating determination of gemifloxacin mesylate. Anal Bioanal Chem 5(1):74–86

    CAS  Google Scholar 

  31. Al-Mohaimeed AM, Al-Tamimi SA, Alarfaj NA, Aly FA (2012) New coated wire sensors for potentiometric determination of gemifloxacin in pure form, pharmaceutical formulations and biological fluids. Int J Electrochem Sci 7:12518–12530

    CAS  Google Scholar 

  32. Zhao F, Zhao WH, Xiong W (2013) Chemiluminescence determination of gemifloxacin based on diperiodatoargentate(III)–sulphuric acid reaction in a micellar medium. Luminescence 28:108–113

    Article  CAS  PubMed  Google Scholar 

  33. Madhuri D, Chandrasekhar K, Devanna N, Somasekhar G (2010) Direct and derivative spectrophotometric determination of gemifloxacin mesylate in pure form and pharmaceutical preparations using p acceptors. Int J Pharm Sci Res 1(4):222–231

    CAS  Google Scholar 

  34. Paim CS, Fuehr F, Steppe M, Scherman Schapoval EE (2012) Gemifloxacin mesylate: UV spectrophotometric method for quantitative determination using experimental design for robustness. Quim Nova 35(1):193–197

    Article  CAS  Google Scholar 

  35. Ebraheem SAM, Elbashir AA, Aboul-Enein HY (2011) Spectrophotometric methods for the determination of gemifloxacin in pharmaceutical formulations. Acta Pharm Sin B 1(4):248–253

    Article  CAS  Google Scholar 

  36. Tekkeli SEK, Onal A (2011) Spectrofluorimetric methods for the determination of gemifloxacin in tablets and spiked plasma samples. J Fluoresc 21(3):1001–1007

    Article  CAS  Google Scholar 

  37. Abdallah NA, Ibhrahim HF, Hegabe NH (2017) Comparative study of molecularly imprinted polymer and magnetic molecular imprinted nanoparticles as recognition sites for the potentiometric determination of gemifloxacin mesylate. Int J Electrochem Sci 12:10894–10910. https://doi.org/10.20964/2017.11.74

    Article  CAS  Google Scholar 

  38. Moreira FT, Freitas VA, Sales MG (2011) Biomimetic norfloxacin sensors made of molecularly-imprinted materials for potentiometric transduction. Microchim Acta 172(1–2):15–23

    Article  CAS  Google Scholar 

  39. Validation of Analytical Procedures: Methodology. In: International conference on harmonisation (ICH) guidance for industry, Geneva, Switzerland, 1996

  40. Xiao D, Dramou P, Xiong N, He H, Yuan D, Dai H, Li H, He X, Peng J, Li N (2013) Preparation of molecularly imprinted polymers on the surface of magnetic carbon nanotubes with a pseudo template for rapid simultaneous extraction of four fluoroquinolones in egg samples. Analyst 138(11):3287–3296

    Article  CAS  PubMed  Google Scholar 

  41. Shi X, Wu A, Qu G, Li R, Zhang D (2007) Development and characterisation of molecularly imprinted polymers based on methacrylic acid for selective recognition of drugs. Biomaterials 28(25):3741–3749

    Article  CAS  PubMed  Google Scholar 

  42. Bravo JC, Fernández P, Durand JS (2005) Flow injection fluorimetric determination of β-estradiol using a molecularly imprinted polymer. Analyst 130(10):1404–1409

    Article  CAS  PubMed  Google Scholar 

  43. El Gohary NA, Madbouly A, El Nashar RM, Mizaikoff B (2015) Synthesis and application of a molecularly imprinted polymer for the voltammetric determination of famciclovir. Biosens Bioelectron 65:108–114

    Article  CAS  PubMed  Google Scholar 

  44. Saad EM, Madbouly A, Ayoub N, El Nashar RM (2015) Preparation and application of molecularly imprinted polymer for isolation of chicoric acid from Cichorium intybus L. medicinal plant. Anal Chim Acta 877:80–89

    Article  CAS  PubMed  Google Scholar 

  45. Yilmaz V, Hazer O, Kartal S (2013) Synthesis, characterization and application of a novel ion-imprinted polymer for selective solid phase extraction of copper(II) ions from high salt matrices prior to its determination by FAAS. Talanta 116:322–329

    Article  CAS  PubMed  Google Scholar 

  46. Wu N, Luo Z, Ge Y, Guo P, Du K, Tang W, Du W, Zeng A, Chang C, Fu Q (2016) A novel surface molecularly imprinted polymer as the solid-phase extraction adsorbent for the selective determination of ampicillin sodium in milk and blood samples. J Pharm Anal 6(3):157–164

    Article  PubMed  PubMed Central  Google Scholar 

  47. Sikiti P, Msagati TA, Mamba BB, Mishra AK (2014) Synthesis and characterization of molecularly imprinted polymers for the remediation of PCBs and dioxins in aqueous environments. J Environ Health Sci Eng 12(1):82–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pardeshi S, Dhodapkar R, Kumar A (2014) Molecularly imprinted microspheres and nanoparticles prepared using precipitation polymerisation method for selective extraction of gallic acid from Emblica officinalis. Food Chem 146(2014):385–393

    Article  CAS  PubMed  Google Scholar 

  49. Lagha A, Adhoum N, Monser L (2011) A molecularly imprinted polymer for the selective solid-phase extraction of ibuprofen from urine samples. Open Chem Biomed Methods J 4:7–13

    Article  CAS  Google Scholar 

  50. Jing T, Gao XD, Wang P, Wang Y, Lin YF, Hu XZ, Hao QL, Zhou YK, Mei SR (2009) Determination of trace tetracycline antibiotics in foodstuffs by liquid chromatography–tandem mass spectrometry coupled with selective molecular-imprinted solid-phase extraction. Anal Bioanal Chem 393(8):2009–2018

    Article  CAS  PubMed  Google Scholar 

  51. Atlabachew M, Torto N, Chandravanshi BS, Redi-Abshiro M, Chigome S, Mothibedi K, Combrinck S (2016) A (−)-norephedrine-based molecularly imprinted polymer for the solid-phase extraction of psychoactive phenylpropylamino alkaloids from Khat (Catha edulis Vahl. Endl.) chewing leaves. Biomed Chromatogr 30:1007–1015

    Article  CAS  PubMed  Google Scholar 

  52. Sellergren B, Lanza F (2001) Molecularly imprinted polymers in solid phase extractions. In: Sellergren B (ed) Molecularly imprinted polymers: man-made mimics of antibodies and their applications in analytical chemistry. Elsevier, Amsterdam, pp 355–373

    Chapter  Google Scholar 

  53. Kadi AA, Angawi RF, Attwa MW, Darwish HW, Abdelhameed AS (2013) High throughput quantitative bioanalytical LC/MS/MS determination of gemifloxacin in human urine. J Chem 2013:905704. https://doi.org/10.1155/2013/905704

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the Institute of Analytical and Bioanalytical Chemistry (IABC), University of Ulm, Germany and the German University in Cairo for supporting this work by allowing the first author to conduct part of her practical work in the Laboratory of Prof. Boris Mizaikoff. The authors would also like to thank MSc Adel Madbouly for his valuable contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasha M. El Nashar.

Ethics declarations

Conflict of interest

The authors hereby declare no conflict of interest.

Ethical Approval

All procedures performed in studies involving human urine samples were approved by the ethical committee of the German University in Cairo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omran, N.H., Wagdy, H.A., Abdel-Halim, M. et al. Validation and Application of Molecularly Imprinted Polymers for SPE/UPLC–MS/MS Detection of Gemifloxacin Mesylate. Chromatographia 82, 1617–1631 (2019). https://doi.org/10.1007/s10337-019-03782-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-019-03782-1

Keywords

Navigation