Skip to main content
Log in

Interactions of Proteins with the Acidic Components of the Electrolyte Solution and Their Role in the Performance of Separations by CZE

  • Original
  • Published:
Chromatographia Aims and scope Submit manuscript

Abstract

This paper reports the results of a study performed to investigate the dependence of the performance of protein separation by capillary zone electrophoresis (CZE) on the anionic component of the electrolyte solutions consisting of 20 mM N,N,N′,N′-tetramethyl-1,3-butanediamine (TMBD) titrated to either pH 4.0 or pH 6.5 with either a monoprotic or a polyprotic acid. With the exception of hydrochloric acid, the acids were selected among those commonly used as the constituents of the solutions employed for protein analysis by either HPLC or CZE. TMBD was chosen for its effectiveness at preventing the interactions of proteins with the inner wall of bare fused-silica capillaries. The performance of separations was evaluated using four basic model proteins having pI value and molecular mass ranging from 9.5 to 11.0 and from 12,400 to 25,000 Da, respectively. It is shown that the different acids used as the components of the background electrolyte solutions, all containing the same concentration of TMBD, affect to different extents both migration time and peak shape of the tested proteins. The performance displayed by the BGE containing phosphate ions is enhanced using TMBD in combination with diethylenetriamine, an aliphatic vicinal triamine having effective buffering capacity at pH 4.0 and capability at minimizing protein–capillary wall interactions. The reported experimental evidences are discussed based on the possible interactions that the phosphate ions are known to establish with both the protein molecules and the surface of bare fused-silica capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Corradini D (2010) Capillary electromigration techniques. In: Corradini D (ed) Handbook of HPLC, 2nd edn. CRC Press, Taylor & Francis Group, USA, pp 155–206

    Chapter  Google Scholar 

  2. Geiger L, Veuthey J-L (2007) Electrophoresis 28:45–57

    Article  Google Scholar 

  3. Reijenga JC, Gagliardi LG, Kenndler E (2007) J Chromatogr A 1155:142–145

    Article  CAS  Google Scholar 

  4. Wang Z, Ouyang J, Baeyens WRG (2008) J Chromatogr B 862:1–14

    Article  CAS  Google Scholar 

  5. Popa TV, Mant CT, Hodges RS (2006) J Chromatogr A 1111:192–199

    Article  CAS  Google Scholar 

  6. Jáč P, Polášek M, Pospíšilová M (2006) J Pharm Biomed Anal 40:805–814

    Article  Google Scholar 

  7. López-Pastor M, Simonet BM, Lendl B, Valcárel M (2008) Electrophoresis 29:94–107

    Article  Google Scholar 

  8. Varenne A, Descroix S (2008) Anal Chim Acta 674:243–248

    Google Scholar 

  9. Elbashir AA, Aboul-Enein HY (2010) Curr Pharm Anal 6:9–23

    Google Scholar 

  10. Corradini D, Nicoletti I, Bonn GK (2009) Electrophoresis 30:1869–1876

    Article  CAS  Google Scholar 

  11. Li J, Han H, Wang Q, Liu X, Jang SJ (2010) Anal Chim Acta 674:243–248

    Article  CAS  Google Scholar 

  12. Corradini D (1997) J Chromatogr B 699:221–257

    Article  CAS  Google Scholar 

  13. Znaleziona J, Radim Knob JP, Maier V, Ševičik J (2008) Chromatographia 67:S5–S12

    Article  CAS  Google Scholar 

  14. Dolnik V (2008) Electrophoresis 29:143–156

    Article  CAS  Google Scholar 

  15. El Rassi Z (2010) Electrophoresis 31:174–191

    Article  CAS  Google Scholar 

  16. Lucy CA, MacDonald AM, Gulcev MD (2008) J Chromatogr A 1184:81–105

    CAS  Google Scholar 

  17. Doherty EAS, Meagher RJ, Albarghouthi MN, Baron AE (2003) Electrophoresis 24:34–54

    Article  Google Scholar 

  18. Corradini D, Cannarsa G (1995) Electrophoresis 16:630–635

    Article  CAS  Google Scholar 

  19. Corradini D, Cannarsa G, Corradini C, Nicoletti I, Pizzoferrato L, Vivanti V (1996) Electrophoresis 17:120–124

    Google Scholar 

  20. Melander WY, Stoveken J, Horváth Cs (1979) J Chromatogr 185:111–127

    Article  CAS  Google Scholar 

  21. Kalman F, Ma S, Fox RO, Horváth Cs (1995) J Chromatogr A 705:135–154

    Article  CAS  Google Scholar 

  22. Corradini D, Cannarsa G (1996) LC-GC 14:326–332

    CAS  Google Scholar 

  23. Perrin, DD, Dempsey, B (1974) Buffers for pH and metal ion control. Chapman & Hall, London

  24. Righetti PG, Caravaggio T (1976) J Chromatogr 127:1–28

    Article  CAS  Google Scholar 

  25. Worthington, CC (ed) (1988) Worthington enzyme manual. Worthington Biochemical Corporation, Freehold, p. 219, 299

  26. McCormick RM (1988) Anal Chem 60:471–473

    Article  Google Scholar 

  27. Stutz H (2009) Electrophoresis 30:2032–2061

    Article  CAS  Google Scholar 

  28. Corradini D, Cannarsa G, Fabbri E, Corradini C (1995) J Chromatogr A 709:127–134

    Article  CAS  Google Scholar 

  29. Rabiller-Baudry M, Chaufer B (2001) J Chromatogr B 753:67–77

    Article  CAS  Google Scholar 

  30. Stutz H, Bordin G, Rodriguez AS (2004) Electrophoresis 25:1071–1089

    Article  CAS  Google Scholar 

  31. Corradini D, Sprecacenere L (2003) Chromatographia 58:587–596

    CAS  Google Scholar 

  32. Corradini D, Bevilacqua L, Nicoletti I (2005) Chromatographia 62:S43–S50

    Article  CAS  Google Scholar 

  33. Butler JN (1964) Ionic equilibrium—a mathematical approach. Addison-Wesley, Reading

    Google Scholar 

  34. Wei T, Kaewtathip S, Shing K (2009) J. Phys Chem C 113:2053–2062

    Article  CAS  Google Scholar 

  35. Corradini D, Cogliandro E, D’Alessandro L, Nicoletti I (2003) J Chromatogr A 1013:221–232

    Article  CAS  Google Scholar 

  36. Mohabbati S, Westerlund D et al (2006) J Chromatogr A 1121:32–39

    Article  CAS  Google Scholar 

  37. Mohabbati S, Hjerten S, Westerlund D (2008) Anal Bioanal Chem 390:667–678

    Article  CAS  Google Scholar 

  38. Murray DK (2010) J Colloid Interf Sci 352:163–170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper has been presented in the Plenary Session V of the 16th ISSS dedicated to the memory of Prof. Csaba Horváth, who would have celebrated his 80th birthday in 2010. All lectures of this session were presented by separation scientists who, as the corresponding author of this paper, worked with him at Yale University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danilo Corradini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Corradini, D., De Rossi, A. & Nicoletti, I. Interactions of Proteins with the Acidic Components of the Electrolyte Solution and Their Role in the Performance of Separations by CZE. Chromatographia 73 (Suppl 1), 103–111 (2011). https://doi.org/10.1007/s10337-011-2018-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10337-011-2018-2

Keywords

Navigation