Skip to main content

Advertisement

Log in

Extensive use of the high seas by Vulnerable Fiordland Penguins across non-breeding stages

  • Original Article
  • Published:
Journal of Ornithology Aims and scope Submit manuscript

Abstract

Migratory seabirds experience varying levels of both protection and threats as they travel across marine regions and countries’ jurisdictions. Studying their seasonal distribution provides insights into the full range of exploited habitats and potential gaps in conservation policy existing in the visited areas. Here we used light-based geolocation to examine the seasonal at-sea distribution of an endemic seabird from New Zealand, the Fiordland Penguin Eudyptes pachyrhynchus, with respect to Economic Exclusive Zones (EEZs). We show that the five birds successfully tracked from the remote Open Bay Islands exploited vast areas in the South Pacific Ocean and used contrasted habitats across seasons. During extensive periods at-sea before and after moulting, Fiordland Penguins reached cold oceanic waters across the Subantarctic Front (Subantarctic and Polar Frontal zones, 2–10 °C), ranging 1500–2000 km in the southwest of their colony. Across both these trips, all birds distributed extensively outside New Zealand’s EEZ (nearly 50% of time), into areas beyond national jurisdiction providing little tangible protection, and some temporarily entered Australia’s EEZ. This contrasted with previous results from the breeding season, when the Penguins distributed exclusively within New Zealand’s EEZ, in relatively shallow and warm (c. 12–20 °C) waters north of the Southern Subtropical Front. Annually, the tracked Penguins spent 102 days outside New Zealand waters, of which 79 days in the high seas. Our results provide new perspectives on pertinent conservation strategies for migratory “endemic” Penguins. Year-round approach on the at-sea ecology of species seems fundamental for adequate management of threatened marine biodiversity.

Zusammenfassung

Umfassende Nutzung der Hochsee durch gefährdete Dickschnabelpinguine außerhalb der Brutsaison

Ziehende Seevögel erfahren sowohl Schutz als auch Bedrohung in unterschiedlichem Ausmaß, während sie durch unterschiedliche Meeresregionen und die Rechtsräume verschiedener Länder ziehen. Ihre saisonale Verbreitung zu untersuchen ermöglicht Einblicke in die gesamte Breite genutzter Habitate und eventuelle Lücken in der Naturschutzpolitik, die in den aufgesuchten Gebieten existieren. Hier haben wir Helldunkelgeolokatoren benutzt, um die saisonale Verbreitung auf hoher See eines in Neuseeland endemischen Seevogels, des Dickschnabelpinguins Eudyptes pachyrhynchus, mit Bezug auf ausschließliche Wirtschaftszonen (EEZs) zu untersuchen. Wir zeigen, dass die fünf Vögel, deren Weg wir erfolgreich von den abgelegenen Open Bay-Inseln aus verfolgen konnten, ausgedehnte Gebiete im Südpazifik und verschiedene Habitate im Jahreszeitenverlauf nutzten. Sowohl vor als auch nach der Mauser verbrachten die Dickschnabelpinguine viel Zeit auf hoher See und erreichten Kaltwasserbereiche jenseits der Subantarktisfront (Subantarktis- und Polarfrontzonen, 2–10 °C), 1500–2000 km südwestlich von ihrer Kolonie. Auf beiden Reisen hielten sich die Vögel zu fast 50% der Zeit außerhalb der ausschließlichen Wirtschaftszone Neuseelands auf, in Gebieten jenseits nationaler Gerichtsbarkeit, die wenig konkreten Schutz boten. Einige Tiere drangen vorübergehend in Australiens ausschließliche Wirtschaftszone ein. Dies stand im Widerspruch zu vorherigen Befunden aus der Brutsaison, während derer sich die Pinguine lediglich in Neuseelands ausschließlicher Wirtschaftszone aufhielten, in relativ flachen und warmen (ca. 12–20 °C) Gewässern nördlich der Südlichen Subtropischen Front. Die in der vorliegenden Studie untersuchten Pinguine verbrachten 102 Tage des Jahres außerhalb neuseeländischer Gewässer, davon 79 Tage auf hoher See. Unsere Ergebnisse liefern neue Perspektiven für stichhaltige Schutzstrategien für ziehende „endemische“ Pinguine. Eine ganzjährige Herangehensweise an die Hochsee-Ökologie von Arten erscheint wesentlich für das angemessene Management bedrohter mariner Artenvielfalt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

AUS and NZ indicate EEZs bordering territories of Australia and New Zealand, respectively), oceanographic fronts (thin white dashed lines, from north to south: the Southern Subtropical Front: STF, the Subantarctic Front: SAF, and the Antarctic Polar Front: APF), and bathymetry (-2000 m isobath depicted in light grey; shallower versus deeper areas in lighter versus darker blue colours, respectively). The study colony on Taumaka is indicated with a white circle

Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The animals’ geolocation estimates will be made available upon request on the BirdLife International Seabird Tracking Database.

References

  • Anderson OR, Small CJ, Croxall JP, Dunn EK, Sullivan BJ, Yates O, Black A (2011) Global seabird bycatch in longline fisheries. Endang Spec Res 14:91–106

    Google Scholar 

  • Barkley AN, Gollock M, Samoilys M, Llewellyn F, Shivji M, Wetherbee B, Hussey NE (2019) Complex transboundary movements of marine megafauna in the Western Indian Ocean. Anim Conserv 22:420–431

    Google Scholar 

  • Barton PS, Lentini PE, Alacs E, Bau S, Buckley YM, Burns EL et al (2015) Guidelines for using movement science to inform biodiversity policy. Environ Manage 56:791–801

    PubMed  Google Scholar 

  • BirdLife International (2020a) IUCN Red List for birds. https://www.birdlife.org Accessed 10 Apr 2020

  • BirdLife International (2020b) Species factsheet: Eudyptes pachyrhynchus. https://www.birdlife.org Accessed 01 Jan 2020

  • Birt VL, Birt TP, Goulet D, Cairns DK, Montevecchi WA (1987) Ashmole's halo: direct evidence for prey depletion by a seabird. Mar Ecol Prog Ser 40:205–208

    Google Scholar 

  • Bost CA, Cotté C, Bailleul F, Cherel Y, Charrassin JB, Guinet C et al (2009) The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J Mar Syst 78:363–376

    Google Scholar 

  • Bost CA, Thiebot JB, Pinaud D, Cherel Y, Trathan PN (2009) Where do penguins go during the inter-breeding period? Using geolocation to track the winter dispersion of the macaroni penguin. Biol Lett 5:473–476

    CAS  PubMed  PubMed Central  Google Scholar 

  • Constable AJ, de la Mare WK, Agnew DJ, Everson I, Miller D (2000) Managing fisheries to conserve the Antarctic marine ecosystem: practical implementation of the Convention on the Conservation of Antarctic Marine Living Resources (CCAMLR). ICES J Mar Sci 57:778–791

    Google Scholar 

  • Crawford RJM, Makhado AB, Upfold L, Dyer BM (2008) Mass on arrival of rockhopper penguins at Marion Island correlated with breeding success. Afr J Mar Sci 30:185–188

    Google Scholar 

  • Crawford R, Ellenberg U, Frere E, Hagen C, Baird K, Brewin P et al (2017) Tangled and drowned: a global review of penguin bycatch in fisheries. Endang Spec Res 34:373–396

    Google Scholar 

  • Cribari-Neto L, Zeilis A (2010) Beta Regression in R. J Stat Softw 34:1–24

    Google Scholar 

  • Dehnhard N, Skei J, Christensen-Dalsgaard S, May R, Halley D, Ringsby TH, Lorentsen SH (2020) Boat disturbance effects on moulting common eiders Somateria mollissima. Mar Biol 167:1–11

    Google Scholar 

  • Dias MP, Martin R, Pearmain EJ, Burfield IJ, Small C, Phillips RA, Yates O, Lascelles B, Borboroglu PG, Croxall JP (2019) Threats to seabirds: a global assessment. Biol Conserv 237:525–537

    Google Scholar 

  • Dunn DC, Harrison AL, Curtice C, DeLand S, Donnelly B, Fujioka E et al (2019) The importance of migratory connectivity for global ocean policy. Proc R Soc B 286:20191472

    PubMed  Google Scholar 

  • Gjerde KM, Dotinga H, Hart S, Molenaar EJ, Rayfuse R, Warner R (2008) Regulatory and governance gaps in the international regime for the conservation and sustainable use of marine biodiversity in areas beyond national jurisdiction. IUCN, Gland

    Google Scholar 

  • Harrison AL, Costa DP, Winship AJ, Benson SR, Bograd SJ, Antolos M et al (2018) The political biogeography of migratory marine predators. Nature Ecol Evol 2:1571–1578

    Google Scholar 

  • Heerah K, Dias MP, Delord K, Oppel S, Barbraud C, Weimerskirch H, Bost CA (2019) Important areas and conservation sites for a community of globally threatened marine predators of the Southern Indian Ocean. Biol Conserv 234:192–201

    Google Scholar 

  • Huntington HP, Bobbe S, Hartsig A, Knight EJ, Knizhnikov A, Moiseev A et al (2019) The role of areas to be avoided in the governance of shipping in the greater Bering Strait region. Mar Pol 110:103564

    Google Scholar 

  • Kroodsma DA, Mayorga J, Hochberg T, Miller NA, Boerder K, Ferretti F et al (2018) Tracking the global footprint of fisheries. Science 359:904–908

    CAS  PubMed  Google Scholar 

  • Long R (2017) A survey of Fiordland crested penguins/tawaki (Eudyptes pachyrhynchus) from Cascade River to Martins Bay, South Westland, New Zealand, 2014. Notornis 64:206–210

    Google Scholar 

  • Mattern T (2013) Fiordland penguins, Eudyptes pachyrhynchus. In: Garcia-Borboroglu PG, Boersma PD (eds) Penguins: natural history and conservation. University of Washington Press, Seattle, WA, pp 152–167

    Google Scholar 

  • Mattern T, Ellenberg U (2017) The Tawaki Project-Field Report 2016-Year 3, 16 September-13 November 2016. Dunedin, New Zealand

    Google Scholar 

  • Mattern T, Wilson KJ (2019) New Zealand penguins–current knowledge and research priorities. A report compiled for Birds New Zealand. 2018

  • Mattern T, Pütz K, Garcia-Borboroglu P, Ellenberg U, Houston DM, Long R et al (2018) Marathon penguins–Reasons and consequences of long-range dispersal in Fiordland penguins/Tawaki during the pre-moult period. PLoS ONE 13:e0198688

    PubMed  PubMed Central  Google Scholar 

  • McCauley DJ, Pinsky ML, Palumbi SR, Estes JA, Joyce FH, Warner RR (2015) Marine defaunation: animal loss in the global ocean. Science 347:1255641

    PubMed  Google Scholar 

  • McLean IG, Russ RB (1991) The Fiordland crested penguin survey, stage I: doubtful to milford sounds. Notornis 38:183–190

    Google Scholar 

  • Merrie A, Dunn DC, Metian M, Boustany AM, Takei Y, Elferink AO et al (2014) An ocean of surprises–trends in human use, unexpected dynamics and governance challenges in areas beyond national jurisdiction. Glob Environ Change 27:19–31

    Google Scholar 

  • Murie JO, Davis LS, McLean IG (1991) Identifying the sex of Fiordland Crested Penguins by morphometric characters. Notornis 38:233–238

    Google Scholar 

  • Parks Australia (2020) Macquarie Island Marine Park. https://parksaustralia.gov.au/marine/parks/south-east/macquarie-island/#map

  • Rakhimberdiev E, Senner NR, Verhoeven MA, Winkler DW, Bouten W, Piersma T (2016) Comparing inferences of solar geolocation data against high-precision GPS data: annual movements of a double-tagged black-tailed godwit. J Avian Biol 47:589–596

    Google Scholar 

  • Staniland IJ, Robinson SL, Silk JRD, Warren N, Trathan PN (2012) Winter distribution and haul-out behaviour of female Antarctic fur seals from South Georgia. Mar Biol 159:291–301

    Google Scholar 

  • Poupart TA, Waugh SM, Bost CA, Kato A, Miskelly CM, Rogers KM, Arnould JP (2019) Foraging ecology of a winter breeder, the Fiordland penguin. Mar Ecol Prog Ser 614:183–197

    Google Scholar 

  • Poupart TA, Waugh SM, Miskelly CM, Kato A, Angel LP, Rogers KM, Arnould JP (2019) Fine-scale foraging behaviour of southern Buller’s albatross, the only Thalassarche that provisions chicks through winter. Mar Ecol Prog Ser 625:163–179

    Google Scholar 

  • R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Runge CA, Watson JE, Butchart SH, Hanson JO, Possingham HP, Fuller RA (2015) Protected areas and global conservation of migratory birds. Science 350:1255–1258

    CAS  PubMed  Google Scholar 

  • Sumner MD, Wotherspoon SJ, Hindell MA (2009) Bayesian estimation of animal movement from archival and satellite tags. PLoS ONE 4:e7324

    PubMed  PubMed Central  Google Scholar 

  • Thiebot JB, Cherel Y, Trathan PN, Bost CA (2011) Inter-population segregation in the wintering areas of macaroni penguins. Mar Ecol Prog Ser 421:279–290

    Google Scholar 

  • Thiebot JB, Cherel Y, Trathan PN, Bost CA (2012) Coexistence of oceanic predators on wintering areas explained by population-scale foraging segregation in space or time. Ecology 93:122–130

    PubMed  Google Scholar 

  • Thiebot JB, Authier M, Trathan PN, Bost CA (2014) Gentlemen first? ‘Broken stick’ modelling reveals sex-related homing decision date in migrating seabirds. J Zool 292:25–30

    Google Scholar 

  • Thiebot JB, Cherel Y, Acqueberge M, Prudor A, Trathan PN, Bost CA (2014) Adjustment of pre-moult foraging strategies in Macaroni Penguins Eudyptes chrysolophus according to locality, sex and breeding status. Ibis 156:511–522

    Google Scholar 

  • Thiebot JB, Delord K, Marteau C, Weimerskirch H (2014) Stage-dependent distribution of the critically endangered Amsterdam albatross in relation to economic exclusive zones. Endang Spec Res 23:263–276

    Google Scholar 

  • Thompson DA (2016) Penguins reveal unknown swimming talents. NIWA media release. https://www.niwa.co.nz/news/penguins-reveal-unknown-swimming-talents

  • Trathan PN, García-Borboroglu P, Boersma D, Bost CA, Crawford RJ, Crossin GT et al (2015) Pollution, habitat loss, fishing, and climate change as critical threats to penguins. Conserv Biol 29:31–41

    PubMed  Google Scholar 

  • United Nations (1982) United Nations Convention on the Law of the Sea.

  • Walker K, Elliott G (2006) At-sea distribution of Gibson's and Antipodean wandering albatrosses, and relationships with longline fisheries. Notornis 53:265–290

    Google Scholar 

  • Warham J (1974) The Fiordland crested penguin Eudyptes pachyrhynchus. Ibis 116:1–27

    Google Scholar 

  • Weimerskirch H, Wilson RP (2000) Oceanic respite for wandering albatrosses. Nature 406:955–956

    CAS  PubMed  Google Scholar 

  • Weimerskirch H, Collet J, Corbeau A, Pajot A, Hoarau F, Marteau C, Filippi D, Patrick SC (2020) Ocean sentinel albatrosses locate illegal vessels and provide the first estimate of the extent of nondeclared fishing. Proc Natl Acad Sci USA 117:3006–3014

    CAS  PubMed  Google Scholar 

  • Whitehead TO, Kato A, Ropert-Coudert Y, Ryan PG (2016) Habitat use and diving behaviour of macaroni Eudyptes chrysolophus and eastern rockhopper E. chrysocome filholi penguins during the critical pre-moult period. Mar Biol 163:19

    Google Scholar 

  • Williams TD (1995) The Penguins: spheniscidae. Oxford, Oxford University Press

    Google Scholar 

Download references

Acknowledgements

We thank the owners of Taumaka and Popotai as represented by the Taumaka Ahu Whenua Trust for access to the study site. We also wish to thank Kahurangi Wilson-Mahuika who is also an island owner, for his help with fieldwork, his open heart and insights into knowledge about the species, Jean-Claude Stahl, Aude Boudet and David Waugh for helpful assistance with the field work, and Paige Green for advice on the analyses. The work is dedicated to Ian Rasmussen, who devoted a large part of his life to caring for Taumaka / Open Bay Island and treasured its wildlife.

Funding

The study was funded by Te Papa Tongarewa museum of New Zealand, CNRS France and Deakin University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Baptiste Thiebot.

Ethics declarations

Conflict of interest

We declare that we have no conflict of interest.

Ethical approval

All field procedures were in accordance with the ethical standards of the New Zealand Department of Conservation. The study was conducted under Wildlife Permit 49827-FAU issued by the New Zealand Department of Conservation.

Additional information

Communicated by C. Barbraud.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thiebot, JB., Bost, CA., Poupart, T.A. et al. Extensive use of the high seas by Vulnerable Fiordland Penguins across non-breeding stages. J Ornithol 161, 1033–1043 (2020). https://doi.org/10.1007/s10336-020-01791-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10336-020-01791-8

Keywords

Navigation