Skip to main content

Advertisement

Log in

Arterial input function in a dedicated slice for cerebral perfusion measurements in humans

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

We aimed to modify our previously published method for arterial input function measurements for evaluation of cerebral perfusion (dynamic susceptibility contrast MRI) such that it can be applied in humans in a clinical setting.

Materials and methods

Similarly to our previous work, a conventional measurement sequence for dynamic susceptibility contrast MRI is extended with an additional measurement slice at the neck. Measurement parameters at this slice were optimized for the blood signal (short echo time, background suppression, magnitude and phase images). Phase-based evaluation of the signal in the carotid arteries is used to obtain quantitative arterial input functions.

Results

In all pilot measurements, quantitative arterial input functions were obtained. The resulting absolute perfusion parameters agree well with literature values (gray and white matter mean values of 46 and 24 mL/100 g/min, respectively, for cerebral blood flow and 3.0% and 1.6%, respectively, for cerebral blood volume).

Conclusions

The proposed method has the potential to quantify arterial input functions in the carotid arteries from a direct measurement without any additional normalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Østergaard L, Weisskoff RM, Chesler DA, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: mathematical approach and statistical analysis. Magn Reson Med 36(5):715–725

    Article  PubMed  Google Scholar 

  2. Østergaard L, Sorensen AG, Kwong KK, Weisskoff RM, Gyldensted C, Rosen BR (1996) High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part II: experimental comparison and preliminary results. Magn Reson Med 36:726–735

    Google Scholar 

  3. Conturo TE, Barker PB, Mathews VP, Monsein LH, Bryan RN (1992) MR imaging of cerebral perfusion by phase-angle reconstruction of bolus paramagnetic-induced frequency shifts. Magn Reson Med 27(2):375–390

    Article  PubMed  CAS  Google Scholar 

  4. Akbudak E, Conturo TE (1996) Arterial input functions from MR phase imaging. Magn Reson Med 36(6):809–815

    Article  PubMed  CAS  Google Scholar 

  5. van Osch MJ, Vonken EJ, Viergever MA, van der Grond J, Bakker CJ (2003) Measuring the arterial input function with gradient echo sequences. Magn Reson Med 49:1067–1076

    Article  PubMed  Google Scholar 

  6. Calamante F, Morup M, Hansen LK (2004) Defining a local arterial input function for perfusion MRI using independent component analysis. Magn Reson Med 52(4):789–797

    Article  PubMed  Google Scholar 

  7. Mouridsen K, Christensen S, Gyldensted L, Ostergaard L (2006) Automatic selection of arterial input function using cluster analysis. Magn Reson Med 55(3):524–531

    Article  PubMed  Google Scholar 

  8. Kotys MS, Akbudak E, Markham J, Conturo TE (2007) Precision, signal-to-noise ratio, and dose optimization of magnitude and phase arterial input functions in dynamic susceptibility contrast MRI. J Magn Reson Imaging 25(3):598–611

    Article  PubMed  Google Scholar 

  9. Bleeker EJW, van Buchem MA, van Osch MJP (2009) Optimal location for arterial input function measurements near the middle cerebral artery in first-pass perfusion MRI. J Cereb Blood Flow Metab 29(4):840–852

    Article  PubMed  Google Scholar 

  10. Kellner E, Mader I, Mix M, Splitthoff DN, Reisert M, Foerster K, Nguyen-Thanh T, Gall P, Kiselev VG (2013) Arterial input function measurements for bolus tracking perfusion imaging in the brain. Magn Reson Med 69(3):771–780

    Article  PubMed  Google Scholar 

  11. Bleeker EJW, van Buchem MA, Webb AG, van Osch MJP (2010) Phase-based arterial input function measurements for dynamic susceptibility contrast MRI. Magn Reson Med 64(2):358–368

    Article  PubMed  Google Scholar 

  12. Bernstein MA, King KF, Zhou XJ (2004) Handbook of MRI pulse sequences. Elsevier, Amsterdam

    Google Scholar 

  13. Bruder H, Fischer H, Reinfelder HE, Schmitt F (1992) Image reconstruction for echo planar imaging with nonequidistant k-space sampling. Magn Reson Med 23(2):311–323

    Article  PubMed  CAS  Google Scholar 

  14. van Osch MJP, van der Grond J, Bakker CJG (2005) Partial volume effects on arterial input functions: shape and amplitude distortions and their correction. J Magn Reson Imaging 22(6):704–709

    Article  PubMed  Google Scholar 

  15. Kellner E, Mix M, Reisert M, Förster K, Nguyen-Thanh T, Splitthoff DN, Gall P, Kiselev VG, Mader I (2014) Quantitative cerebral blood flow with bolus tracking perfusion MRI: measurements in porcine model and comparison with \({{\rm H}}_2{^{15}O}\) PET. Magn Reson Med 72(6):1723–1734

    Article  PubMed  CAS  Google Scholar 

  16. Yablonskiy DA, Haacke EM (1994) Theory of NMR signal behavior in magnetically inhomogeneous tissues: the static dephasing regime. Magn Reson Med 32(6):749–763

    Article  PubMed  CAS  Google Scholar 

  17. Calamante F, Gadian D, Connelly A (2002) Quantification of perfusion using bolus tracking magnetic resonance imaging in stroke: assumptions, limitations, and potential implications for clinical use. Stroke 33(4):1146–51

    Article  PubMed  CAS  Google Scholar 

  18. Lin W, Celik A, Derdeyn C, An H, Lee Y, Videen T, Oestergaard L, Powers WJ (2001) Quantitative measurements of cerebral blood flow in patients with unilateral carotid artery occlusion: a PET and MR study. J Magn Reson Imaging 14(6):659–67

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Zaharchuk G, Bammer R, Straka M, Newbould RD, Rosenberg J, Olivot JM, Mlynash M, Lansberg MG, Schwartz NE, Marks MM et al (2009) Improving dynamic susceptibility contrast MRI measurement of quantitative cerebral blood flow using corrections for partial volume and nonlinear contrast relaxivity: a xenon computed tomographic comparative study. J Magn Reson Imaging 30(4):743–752

    Article  PubMed  PubMed Central  Google Scholar 

  20. Knutsson L, van Westen D, Petersen ET, Bloch KM, Holtås S, Ståhlberg F, Wirestam R (2010) Absolute quantification of cerebral blood flow: correlation between dynamic susceptibility contrast MRI and model-free arterial spin labeling. Magn Reson Med 28(1):1–7

    CAS  Google Scholar 

  21. Østergaard L, Johannsen P, Høst-Poulsen P, Vestergaard-Poulsen P, Asboe H, Gee AD, Hansen SB, Cold GE, Gjedde A, Gyldensted C (1998) Cerebral blood flow measurements by magnetic resonance imaging bolus tracking: comparison with \([{}^{15}{{\rm O}}]{{\rm H}}_{2}{{\rm O}}\) positron emission tomography in humans. J Cereb Blood Flow Metab 18(9):935–940

    Article  PubMed  Google Scholar 

  22. van Osch MJP, Vonken EJPA, Wu O, Viergever MA, van der Grond J, Bakker CJG (2003) Model of the human vasculature for studying the influence of contrast injection speed on cerebral perfusion MRI. Magn Reson Med 50(3):614–622

    Article  PubMed  Google Scholar 

  23. Calamante F (2005) Bolus dispersion issues related to the quantification of perfusion MRI data. J Magn Reson Imaging 22(6):718–722

    Article  PubMed  Google Scholar 

  24. Mouannes-Srour JJ, Shin W, Ansari SA, Hurley MC, Vakil P, Bendok BR, Lee JL, Derdeyn CP, Carroll TJ (2012) Correction for arterial-tissue delay and dispersion in absolute quantitative cerebral perfusion DSC MR imaging. Magn Reson Med 68(2):495–506

    Article  PubMed  Google Scholar 

  25. Kellner E, Gall P, Günther M, Reisert M, Mader I, Fleysher R, Kiselev VG (2014) Blood tracer kinetics in the arterial tree. PLoS One 9(10):e109230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Willats L, Connelly A, Calamante F (2006) Improved deconvolution of perfusion MRI data in the presence of bolus delay and dispersion. Magn Reson Med 56(1):146–156

    Article  PubMed  Google Scholar 

  27. Frackowiak RS, Lenzi GL, Jones T, Heather JD (1980) Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Cardiovasc Comput Tomogr 4(6):727–736

    Article  CAS  Google Scholar 

  28. Yamaguchi T, Kanno I, Uemura K, Shishido F, Inugami A, Ogawa T, Murakami M, Suzuki K (1986) Reduction in regional cerebral metabolic rate of oxygen during human aging. Stroke 17(6):1220–1228

    Article  PubMed  CAS  Google Scholar 

  29. Leenders K, Perani D, Lammertsma A, Heather J, Buckingham P, Jones T, Healy M, Gibbs J, Wise R, Hatazawa J et al (1990) Cerebral blood flow, blood volume and oxygen utilization normal values and effect of age. Brain 113(1):27–47

    Article  PubMed  Google Scholar 

  30. Ito H, Kanno I, Kato C, Sasaki T, Ishii K, Ouchi Y, Iida A, Okazawa H, Hayashida K, Tsuyuguchi N et al (2004) Database of normal human cerebral blood flow, cerebral blood volume, cerebral oxygen extraction fraction and cerebral metabolic rate of oxygen measured by positron emission tomography with 15O-labelled carbon dioxide or water, carbon monoxide and oxygen: a multicentre study in Japan. Eur J Nucl Med Mol Imaging 31(5):635–643

    Article  PubMed  Google Scholar 

  31. Grandin CB, Bol A, Smith AM, Michel C, Cosnard G (2005) Absolute CBF and CBV measurements by MRI bolus tracking before and after acetazolamide challenge: repeatabilily and comparison with PET in humans. Neuroimage 26(2):525–535

    PubMed  Google Scholar 

  32. Ibaraki M, Ito H, Shimosegawa E, Toyoshima H, Ishigame K, Takahashi K, Kanno I, Miura S (2006) Cerebral vascular mean transit time in healthy humans: a comparative study with PET and dynamic susceptibility contrast-enhanced MRI. J Cereb Blood Flow Metab 27(2):404–413

    Article  PubMed  Google Scholar 

  33. Sakaie KE, Shin W, Curtin KR, McCarthy RM, Cashen TA, Carroll TJ (2005) Method for improving the accuracy of quantitative cerebral perfusion imaging. J Magn Reson Imaging 21(5):512–519

    Article  PubMed  Google Scholar 

  34. Shin W, Horowitz S, Ragin A, Chen Y, Walker M, Carroll TJ (2007) Quantitative cerebral perfusion using dynamic susceptibility contrast MRI: evaluation of reproducibility and age- and gender-dependence with fully automatic image postprocessing algorithm. Magn Reson Med 58(6):1232–1241

    Article  PubMed  Google Scholar 

  35. Mouannes Srour J, Shin W, Shah S, Sen A, Carroll TJ (2010) SCALE-PWI: a pulse sequence for absolute quantitative cerebral perfusion imaging. J Cereb Blood Flow Metab 31(5):1272–1282

    Article  Google Scholar 

  36. Petersen ET, Mouridsen K, Golay X (2010) The QUASAR reproducibility study, part II: results from a multi-center arterial spin labeling test-retest study. Neuroimage 49(1):104–113

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Hansjörg Mast. The work was supported by the German Research Council (grants KI-1089/2-1 and MA 2343/4-1).

Author information

Authors and Affiliations

Authors

Contributions

Author contributions

EK was responsible for protocol/project development, data collection or management, and data analysis. IM was responsible for protocol/project development and data collection or management. MR was responsible for data analysis. HU was responsible for data collection or management. VGK was responsible for protocol/project development and data analysis.

Corresponding author

Correspondence to Elias Kellner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards..

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kellner, E., Mader, I., Reisert, M. et al. Arterial input function in a dedicated slice for cerebral perfusion measurements in humans. Magn Reson Mater Phy 31, 439–448 (2018). https://doi.org/10.1007/s10334-017-0663-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0663-7

Keywords

Navigation