Skip to main content
Log in

Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water–fat MRI

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objectives

To investigate the feasibility of employing a 3D time-interleaved multi-echo gradient-echo (TIMGRE) sequence to measure the proton density fat fraction (PDFF) in the vertebral bone marrow (VBM) of children and to examine cross-sectional changes with age and intra-individual variations from the lumbar to the cervical region in the first two decades of life.

Materials and methods

Quantitative water–fat imaging of the spine was performed in 93 patients (49 girls; 44 boys; age median 4.5 years; range 0.1–17.6 years). For data acquisition, a six-echo 3D TIMGRE sequence was used with phase correction and complex-based water–fat separation. Additionally, single-voxel MR spectroscopy (MRS) was performed in the L4 vertebrae of 37 patients. VBM was manually segmented in the midsagittal slice of each vertebra. Univariable and multivariable linear regression models were calculated between averaged lumbar, thoracic and cervical bone marrow PDFF and age with adjustments for sex, height, weight, and body mass index percentile.

Results

Measured VBM PDFF correlated strongly between imaging and MRS (R 2 = 0.92, slope = 0.94, intercept = −0.72%). Lumbar, thoracic and cervical VBM PDFF correlated significantly (all p < 0.001) with the natural logarithm of age. Differences between female and male patients were not significant (p > 0.05).

Conclusion

VBM development in children showed a sex-independent cross-sectional increase of PDFF correlating with the natural logarithm of age and an intra-individual decrease of PDFF from the lumbar to the cervical region in all age groups. The present results demonstrate the feasibility of using a 3D TIMGRE sequence for PDFF assessment in VBM of children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tavassoli M, Crosby WH (1970) Bone marrow histogenesis: a comparison of fatty and red marrow. Science 169:291–293

    Article  CAS  PubMed  Google Scholar 

  2. Kricun ME (1985) Red–yellow marrow conversion: its effect on the location of some solitary bone lesions. Skelet Radiol 14:10–19

    Article  CAS  Google Scholar 

  3. Babyn PS, Ranson M, McCarville ME (1998) Normal bone marrow: signal characteristics and fatty conversion. Magn Reson Imaging Clin N Am 6:473–495

    CAS  PubMed  Google Scholar 

  4. Tavassoli M (1976) Marrow adipose cells. Histochemical identification of labile and stable components. Arch Pathol Lab Med 100:16–18

    CAS  PubMed  Google Scholar 

  5. Scheller EL, Doucette CR, Learman BS, Cawthorn WP, Khandaker S, Schell B, Wu B, Ding S-Y, Bredella MA, Fazeli PK, Khoury B, Jepsen KJ, Pilch PF, Klibanski A, Rosen CJ, MacDougald OA (2015) Region-specific variation in the properties of skeletal adipocytes reveals regulated and constitutive marrow adipose tissues. Nat Commun 6:7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scheller EL, Rosen CJ (2014) What’s the matter with MAT? marrow adipose tissue, metabolism, and skeletal health. Ann N Y Acad Sci 1311:14–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pichardo JC, Milner RJ, Bolch WE (2011) MRI measurement of bone marrow cellularity for radiation dosimetry. J Nucl Med 52:1482–1489

    Article  CAS  PubMed  Google Scholar 

  8. MacEwan IJ, Glembotski NE, D’Lima D, Bae W, Masuda K, Rashidi HH, Mell LK, Bydder M (2014) Proton density water fraction as a biomarker of bone marrow cellularity: validation in ex vivo spine specimens. Magn Reson Imaging 32:1097–1101

    Article  PubMed  Google Scholar 

  9. Arentsen L, Yagi M, Takahashi Y, Bolan PJ, White M, Yee D, Hui S (2015) Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone 72:118–122

    Article  PubMed  Google Scholar 

  10. Schellinger D, Lin CS, Fertikh D, Lee JS, Lauerman WC, Henderson F, Davis B (2000) Normal lumbar vertebrae: anatomic, age, and sex variance in subjects at proton MR spectroscopy-initial experience. Radiology 215:910–916

    Article  CAS  PubMed  Google Scholar 

  11. Liney GP, Bernard CP, Manton DJ, Turnbull LW, Langton CM (2007) Age, gender, and skeletal variation in bone marrow composition: a preliminary study at 3.0T. J Magn Reson Imaging 26:787–793

    Article  PubMed  Google Scholar 

  12. Roldan-Valadez E, Piña-Jimenez C, Favila R, Rios C (2013) Gender and age groups interactions in the quantification of bone marrow fat content in lumbar spine using 3T MR spectroscopy: a multivariate analysis of covariance (Mancova). Eur J Radiol 82:e697–e702

    Article  PubMed  Google Scholar 

  13. Martin J, Nicholson G, Cowin G, Ilente C, Wong W, Kennedy D (2014) Rapid determination of vertebral fat fraction over a large range of vertebral bodies. J Med Imaging Radiat Oncol 58:155–163

    Article  PubMed  Google Scholar 

  14. Bredella MA, Daley SM, Kalra MK, Brown JK, Miller KK, Torriani M (2015) Marrow adipose tissue quantification of the lumbar spine by using dual-energy CT and single-voxel 1H MR spectroscopy: a feasibility study. Radiology 277:230–235

    Article  PubMed  PubMed Central  Google Scholar 

  15. Barber QM, Yahya A (2015) Aspects of spinal bone marrow fat to water quantification with magnetic resonance spectroscopy at 3T. Biomed Phys Eng Express 1:047001

    Article  Google Scholar 

  16. Dieckmeyer M, Ruschke S, Cordes C, Yap SP, Kooijman H, Hauner H, Rummeny EJ, Bauer JS, Baum T, Karampinos DC (2015) The need for T2 correction on MRS-based vertebral bone marrow fat quantification: implications for bone marrow fat fraction age dependence. NMR Biomed 28:432–439

    Article  CAS  PubMed  Google Scholar 

  17. Baum T, Yap SP, Dieckmeyer M, Ruschke S, Eggers H, Kooijman H, Rummeny EJ, Bauer JS, Karampinos DC (2015) Assessment of whole spine vertebral bone marrow fat using chemical shift-encoding based water-fat MRI. J Magn Reson Imaging 42:1018–1023

    Article  PubMed  Google Scholar 

  18. Kühn J-P, Hernando D, Meffert PJ, Reeder S, Hosten N, Laqua R, Steveling A, Ender S, Schröder H, Pillich D-T (2013) Proton-density fat fraction and simultaneous R2* estimation as an MRI tool for assessment of osteoporosis. Eur Radiol 23:3432–3439

    Article  PubMed  PubMed Central  Google Scholar 

  19. Karampinos DC, Ruschke S, Dieckmeyer M, Eggers H, Kooijman H, Rummeny EJ, Bauer JS, Baum T (2015) Modeling of T2* decay in vertebral bone marrow fat quantification. NMR Biomed 28:1535–1542

    Article  CAS  PubMed  Google Scholar 

  20. Schellinger D, Lin CS, Hatipoglu HG, Fertikh D (2001) Potential value of vertebral proton MR spectroscopy in determining bone weakness. AJNR Am J Neuroradiol 22:1627

    Google Scholar 

  21. Griffith JF, Yeung DKW, Antonio GE, Wong SYS, Kwok TCY, Woo J, Leung PC (2006) Vertebral marrow fat content and diffusion and perfusion indexes in women with varying bone density: MR evaluation. Radiology 241:831–838

    Article  PubMed  Google Scholar 

  22. Karampinos DC, Ruschke S, Gordijenko O, Grande Garcia E, Kooijman H, Burgkart R, Rummeny EJ, Bauer JS, Baum T (2015) Association of MRS-based vertebral bone marrow fat fraction with bone strength in a human in vitro model. J Osteoporos 2015:1–8

    Article  Google Scholar 

  23. Bredella MA, Torriani M, Ghomi RH, Thomas BJ, Brick DJ, Gerweck AV, Rosen CJ, Klibanski A, Miller KK (2011) Vertebral bone marrow fat is positively associated with visceral fat and inversely associated with IGF-1 in obese women. Obesity (Silver Spring) 19:49–53

    Article  CAS  Google Scholar 

  24. Bredella MA, Gill CM, Gerweck AV, Landa MG, Kumar V, Daley SM, Torriani M, Miller KK (2013) Ectopic and serum lipid levels are positively associated with bone marrow fat in obesity. Radiology 269:534–541

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cordes C, Dieckmeyer M, Ott B, Shen J, Ruschke S, Settles M, Eichhorn C, Bauer JS, Kooijman H, Rummeny EJ, Skurk T, Baum T, Hauner H, Karampinos DC (2015) MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging 42:1272–1280

    Article  PubMed  Google Scholar 

  26. Kim YP, Kannengiesser S, Paek M-Y, Kim S, Chung T-S, Yoo YH, Yoon C-S, Song H-T, Lee YH, Suh J-S (2014) Differentiation between focal malignant marrow-replacing lesions and benign red marrow deposition of the spine with T2*-corrected fat-signal fraction map using a three-echo volume interpolated breath-hold gradient echo Dixon sequence. Korean J Radiol 15:781–791

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schraml C, Schmid M, Gatidis S, Schmidt H, la Fougère C, Nikolaou K, Schwenzer NF (2015) Multiparametric analysis of bone marrow in cancer patients using simultaneous PET/MR imaging: correlation of fat fraction, diffusivity, metabolic activity, and anthropometric data. J Magn Reson Imaging 42:1048–1056

    Article  PubMed  Google Scholar 

  28. Ollivier L, Brisse H, Leclère J (2015) Bone marrow imaging: follow-up after treatment in cancer patients. Cancer Imaging 2:90–92

    PubMed Central  Google Scholar 

  29. Daldrup-Link HE, Henning T, Link TM (2007) MR imaging of therapy-induced changes of bone marrow. Eur Radiol 17:743–761

    Article  PubMed  Google Scholar 

  30. Bolan PJ, Arentsen L, Sueblinvong T, Zhang Y, Moeller S, Carter JS, Downs LS, Ghebre R, Yee D, Froelich J, Hui S (2013) Water–fat MRI for assessing changes in bone marrow composition due to radiation and chemotherapy in gynecologic cancer patients. J Magn Reson Imaging 38:1578–1584

    Article  PubMed  Google Scholar 

  31. Carmona R, Pritz J, Bydder M, Gulaya S, Zhu H, Williamson CW, Welch CS, Vaida F, Bydder G, Mell LK (2014) Fat composition changes in bone marrow during chemotherapy and radiation therapy. Int J Radiat Oncol Biol Phys 90:155–163

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cristy M (1981) Active bone marrow distribution as a function of age in humans. Phys Med Biol 26:389–400

    Article  CAS  PubMed  Google Scholar 

  33. Moulopoulos LA, Dimopoulos MA (1997) Magnetic resonance imaging of the bone marrow in hematologic malignancies. Blood 90:2127–2147

    CAS  PubMed  Google Scholar 

  34. Glover GH, Schneider E (1991) Three-point dixon technique for true water/fat decomposition with B0 inhomogeneity correction. Magn Reson Med 18:371–383

    Article  CAS  PubMed  Google Scholar 

  35. Hernando D, Haldar JP, Sutton BP, Ma J, Kellman P, Liang ZP (2008) Joint estimation of water/fat images and field inhomogeneity map. Magn Reson Med 59:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu H, Yu H, McKenzie CA, Shimakawa A, Shimakawa A, Vu AT, Brau ACS, Beatty PJ, Pineda AR, Brittain JH, Brittain JH, Reeder SB, Reeder SB (2007) Multiecho reconstruction for simultaneous water-fat decomposition and T2* estimation. J Magn Reson Imaging 26:1153–1161

    Article  PubMed  Google Scholar 

  37. Bydder M, Yokoo T, Hamilton G, Middleton MS, Chavez AD, Schwimmer JB, Lavine JE, Sirlin CB (2008) Relaxation effects in the quantification of fat using gradient echo imaging. Magn Reson Imaging 26:347–359

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yu H, Shimakawa A, McKenzie CA, Brodsky E, Brittain JH, Reeder SB (2008) Multiecho water–fat separation and simultaneous R2* estimation with multifrequency fat spectrum modeling. Magn Reson Med 60:1122–1134

    Article  PubMed  PubMed Central  Google Scholar 

  39. Liu C-Y, McKenzie CA, Yu H, Brittain JH, Reeder SB (2007) Fat quantification with IDEAL gradient echo imaging: correction of bias from T1 and noise. Magn Reson Med 58:354–364

    Article  PubMed  Google Scholar 

  40. Karampinos DC, Yu H, Yu H, Shimakawa A, Shimakawa A, Link TM, Majumdar S (2011) T1-corrected fat quantification using chemical shift-based water/fat separation: application to skeletal muscle. Magn Reson Med 66:1312–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karampinos DC, Yu H, Shimakawa A, Link TM, Majumdar S (2012) Chemical shift-based water/fat separation in the presence of susceptibility-induced fat resonance shift. Magn Reson Med 68:1495–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hernando D, Sharma SD, Kramer H, Reeder SB (2014) On the confounding effect of temperature on chemical shift-encoded fat quantification. Magn Reson Med 72:464–470

    Article  PubMed  Google Scholar 

  43. Colgan TJ, Hernando D, Sharma SD, Reeder SB (2016) The effects of concomitant gradients on chemical shift encoded MRI. Magn Reson Med. doi:10.1002/mrm.26461

    PubMed  Google Scholar 

  44. Ruschke S, Eggers H, Kooijman H, Diefenbach MN, Baum T, Haase A, Rummeny EJ, Hu HH, Karampinos DC (2016) Correction of phase errors in quantitative water–fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence. Magn Reson Med. doi:10.1002/mrm.26485

    Google Scholar 

  45. Lu W, Yu H, Shimakawa A, Alley M, Reeder SB, Hargreaves BA (2008) Water–fat separation with bipolar multiecho sequences. Magn Reson Med 60:198–209

    Article  PubMed  Google Scholar 

  46. Yu H, Shimakawa A, McKenzie CA, Lu W, Reeder SB, Hinks RS, Brittain JH (2010) Phase and amplitude correction for multi-echo water–fat separation with bipolar acquisitions. J Magn Reson Imaging 31:1264–1271

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yu H, Shimakawa A, Hines CDG, McKenzie CA, Hamilton G, Sirlin CB, Brittain JH, Reeder SB (2011) Combination of complex-based and magnitude-based multiecho water–fat separation for accurate quantification of fat-fraction. Magn Reson Med 66:199–206

    Article  PubMed  PubMed Central  Google Scholar 

  48. Hernando D, Hines CDG, Yu H, Reeder SB (2012) Addressing phase errors in fat–water imaging using a mixed magnitude/complex fitting method. Magn Reson Med 67:638–644

    Article  CAS  PubMed  Google Scholar 

  49. Peterson P, Mansson S (2014) Fat quantification using multiecho sequences with bipolar gradients: investigation of accuracy and noise performance. Magn Reson Med 71:219–229

    Article  PubMed  Google Scholar 

  50. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A (2013) Marrow fat and bone—new perspectives. J Clin Endocrinol Metab 98:935–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Crit Rev Eukaryot Gene Expr 19:109–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pineda AR, Reeder SB, Wen Z, Pelc NJ (2005) Cramér-Rao bounds for three-point decomposition of water and fat. Magn Reson Med 54:625–635

    Article  PubMed  Google Scholar 

  53. Gee CS, Nguyen JTK, Marquez CJ, Heunis J, Lai A, Wyatt C, Han M, Kazakia G, Burghardt AJ, Karampinos DC, Carballido-Gamio J, Krug R (2015) Validation of bone marrow fat quantification in the presence of trabecular bone using MRI. J Magn Reson Imaging 42:539–544

    Article  PubMed  Google Scholar 

  54. Berglund J, Johansson L, Ahlström H, Kullberg J (2010) Three-point Dixon method enables whole-body water and fat imaging of obese subjects. Magn Reson Med 63:1659–1668

    Article  PubMed  Google Scholar 

  55. Hu HH, Börnert P, Hernando D, Kellman P, Ma J, Jingfei Reeder S, Sirlin C (2012) ISMRM workshop on fat–water separation: insights, applications and progress in MRI. Magn Reson Med 68:378–388

    Article  PubMed  PubMed Central  Google Scholar 

  56. Ren J, Dimitrov I, Sherry AD, Malloy CR (2008) Composition of adipose tissue and marrow fat in humans by 1H NMR at 7T. J Lipid Res 49:2055–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bydder M, Girard O, Hamilton G, Hamilton G (2011) Mapping the double bonds in triglycerides. Magn Reson Imaging 29:1041–1046

    Article  CAS  PubMed  Google Scholar 

  58. Kugel H, Jung C, Schulte O, Heindel W (2001) Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging 13:263–268

    Article  CAS  PubMed  Google Scholar 

  59. Griffith JF, Yeung DKW, Ma HT, Leung JCS, Kwok TCY, Leung PC (2012) Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging 36:225–230

    Article  PubMed  Google Scholar 

  60. Custer RP (1932) Studies on the structure and function of bone marrow. 17:951–960

    Google Scholar 

  61. Walker HS, Dietrich RB, Flannigan BD, Lufkin RB, Peacock WJ, Kangarloo H (1987) Magnetic resonance imaging of the pediatric spine. Radiographics 7:1129–1152

    Article  CAS  PubMed  Google Scholar 

  62. Sebag GH, Dubois J, Tabet M, Bonato A, Lallemand D (1993) Pediatric spinal bone marrow: assessment of normal age-related changes in the MRI appearance. Pediatr Radiol 23:515–518

    Article  CAS  PubMed  Google Scholar 

  63. Taccone A, Oddone M, Occhi M, Dell’Acqua A, Ciccone MA (1995) MRI “road-map” of normal age-related bone marrow. Pediatr Radiol 25:588–595

    Article  CAS  PubMed  Google Scholar 

  64. Foster K, Chapman S, Johnson K (2004) MRI of the marrow in the paediatric skeleton. Clin Radiol 59:651–673

    Article  CAS  PubMed  Google Scholar 

  65. Ishijima H, Ishizaka H, Horikoshi H, Sakurai M (1996) Water fraction of lumbar vertebral bone marrow estimated from chemical shift misregistration on MR imaging: normal variations with age and sex. AJR Am J Roentgenol 167:355–358

    Article  CAS  PubMed  Google Scholar 

  66. Gower BA, Nagy TR, Goran MI, Toth MJ (1998) Fat distribution and plasma lipid-lipoprotein concentrations in pre-and postmenopausal women. J Obes 22:605–611

    Article  CAS  Google Scholar 

  67. Toth MJ, Tchernof A, Sites CK, Poehlman ET (2000) Menopause-related changes in body fat distribution. Ann N Y Acad Sci 904:502–506

    Article  CAS  PubMed  Google Scholar 

  68. Blouin K, Boivin A, Tchernof A (2008) Androgens and body fat distribution. J Steroid Biochem Mol Biol 108:272–280

    Article  CAS  PubMed  Google Scholar 

  69. Duda SH, Laniado M, Schick F, Strayle M, Claussen CD (1995) Normal bone marrow in the sacrum of young adults: differences between the sexes seen on chemical-shift MR imaging. AJR Am J Roentgenol 164:935–940

    Article  CAS  PubMed  Google Scholar 

  70. Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D, Schwartz AV (2011) Quantification of vertebral bone marrow fat content using 3 tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging 33:974–979

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank librarian Kathy Zeblisky from Phoenix Children’s Hospital for reference assistance.

Grant support

Stefan Ruschke was supported by the German Academic Exchange Service (DAAD) through the “Kurzstipendien für Doktorandinnen und Doktoranden” program. This work was supported by grant support from Philips Healthcare (to Dimitrios C. Karampinos). Thomas Baum received grant support from the Technical University of Munich, Faculty of Medicine (KKF H01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Ruschke.

Ethics declarations

Conflict of interest

Holger Eggers is an employee of Philips Healthcare. Dimitrios Karampinos receives grant support from Philips Healthcare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruschke, S., Pokorney, A., Baum, T. et al. Measurement of vertebral bone marrow proton density fat fraction in children using quantitative water–fat MRI. Magn Reson Mater Phy 30, 449–460 (2017). https://doi.org/10.1007/s10334-017-0617-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-017-0617-0

Keywords

Navigation