Skip to main content
Log in

The aging effect on prostate metabolite concentrations measured by 1H MR spectroscopy

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

The effects of aging, magnetic field and the voxel localization on measured concentrations of citrate (Cit), creatine (Cr), cholines (Cho) and polyamines (PA) in a healthy prostate were evaluated.

Materials and methods

36 examinations at both 1.5T and 3T imagers of 52 healthy subjects aged 19–71 years were performed with PRESS 3D-CSI sequences (TE = 120 and 145 ms). Concentrations in laboratory units and their ratios to citrate were calculated using the LCModel technique. Absolute concentrations were also obtained after the application of correction coefficients. Statistical analysis was performed using a robust linear mixed effects model.

Results

Significant effects of aging, the magnetic field strength and the voxel position in central (CZ) or peripheral (PZ) zones on all measured metabolites were found. The concentrations (mmol/kg wet tissue) including prediction intervals in a range of 20–70 years were found: Cit: 7.9–17.2; Cho: 1.4–1.7; Cr: 2.8-2.5; PA (as spermine): 0.6–2.1 at 3T in CZ. In PZ, the concentrations were higher by about 10 % as compared to CZ.

Conclusion

Increasing citrate and spermine concentrations with age are significant and correlate well with a recently described increase of zinc in the prostate. These findings should be considered in decision-making if the values obtained from a subject are in the range of control values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, Margolis D, Schnall MD, Shtern F, Tempany CM, Thoeny HD, Verma S (2016) PI RADS prostate imaging—reporting and data system: 2015, version 2. Eur Urol 69:16–40

    Article  PubMed  Google Scholar 

  2. Kobus T, Wright AJ, Weiland E, Heerschap A, Scheenen TW (2015) Metabolite ratios in 1H MR spectroscopic imaging of the prostate. Magn Reson Med 73(1):1–12

    Article  CAS  PubMed  Google Scholar 

  3. Lowry M, Liney GP, Turnbull LW, Manton DJ, Blackband SJ, Horsman A (1996) Quantification of citrate concentration in the prostate by proton magnetic resonance spectroscopy: zonal and age-related differences. Magn Reson Med 36(3):352–358

    Article  CAS  PubMed  Google Scholar 

  4. Mescher M, Merkle H, Kirsch J, Garwood M, Gruetter R (1998) Simultaneous in vivo spectral editing and water suppression. NMR Biomed 11:266–272

    Article  CAS  PubMed  Google Scholar 

  5. Scheenen TWJ, Gambarota G, Weiland E, Klomp DW, Fütterer JJ, Barentsz JO, Heerschap A (2005) Optimal timing for in vivo 1H-MR spectroscopic imaging of the human prostate at 3T. Magn Reson Med 53:1268–1274

    Article  CAS  PubMed  Google Scholar 

  6. Provencher SW (1993) Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 30(6):672–679

    Article  CAS  PubMed  Google Scholar 

  7. Jiru F, Skoch A, Wagnerova D, Dezortova M, Hajek M (2013) jSIPRO—analysis tool for magnetic resonance spectroscopic imaging. Comp Methods Programs Biomed 112(1):173–188

    Article  Google Scholar 

  8. https://www.sites.google.com/site/jsiprotool/. Accessed 28 Apr 2016

  9. Bak M, Rasmussen JT, Nielsen NC (2000) SIMPSON: a general simulation program for solid-state NMR spectroscopy. J Magn Reson 147:296–330

    Article  CAS  PubMed  Google Scholar 

  10. Weis J, Ortiz-Nieto F, Ahlström H (2013) MR spectroscopy of the prostate at 3T: measurements of relaxation times and quantification of prostate metabolites using water as an internal reference. Magn Reson Med Sci 12(4):289–296

    Article  CAS  PubMed  Google Scholar 

  11. Liney GP, Turnbull LW, Lowry M, Turnbull LS, Knowles AJ, Horsman A (1997) In vivo quantification of citrate concentration and water T2 relaxation time of the pathologic prostate gland using 1H MRS and MRI. Magn Reson Imaging 15(10):1177–1186

    Article  CAS  PubMed  Google Scholar 

  12. Chen AP, Cunningham CH, Kurhanewicz J, Xu D, Hurd RE, Pauly JM, Carvajal L, Karpodinis K, Vigneron DB (2006) High-resolution 3D MR spectroscopic imaging of the prostate at 3 T with the MLEV-PRESS sequence. Magn Reson Imaging 24(7):825–832

    Article  CAS  PubMed  Google Scholar 

  13. Heerschap A, Jager GJ, De Koster A, Barentsz JO, de la Rosette J, Debruyne F, Ruijs SH (1993) 1H MRS of prostate pathology. In: Proceedings of the 12th Annual Scientific Meeting, Society of Magnetic Resonance in Medicine, New York, p 213

  14. Liney GP, Lowry M, Turnbull LW, Manton DJ, Knowles AJ, Blackband SJ, Horsman A (1996) Proton MR T2 Maps correlate with the citrate concentration in the prostate. NMR Biomed 9:59–64

    Article  CAS  PubMed  Google Scholar 

  15. Heerschap A, Jager GJ, van der Graaf M, Barentsz JO, Ruijs SH (1997) Proton MR spectroscopy of the normal human prostate with an endorectal coil and a double spin-echo pulse sequence. Magn Reson Med 37(2):204–213

    Article  CAS  PubMed  Google Scholar 

  16. http://mestrelab.com/software/. Accessed 28 Apr 2016

  17. R Development Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria: the R Foundation for Statistical Computing. ISBN 3-900051-07-0. http://www.R-project.org/

  18. Decelle EA, Cheng LL (2014) High-resolution magic angle spinning 1H MRS in prostate cancer. NMR Biomed 27(1):90–99

    Article  CAS  PubMed  Google Scholar 

  19. Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55:1257–1264

    Article  CAS  PubMed  Google Scholar 

  20. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24–0.7-cm3) spatial resolution. Radiology 198(3):795–805

    Article  CAS  PubMed  Google Scholar 

  21. Weis J, Jorulf H, Bergman A, Ortiz-Nieto F, Häggman M, Ahlström H (2011) MR spectroscopy of the human prostate using surface coil at 3 T: metabolite ratios, age-dependent effects, and diagnostic possibilities. J Magn Reson Imaging 34(6):1277–1284

    Article  PubMed  Google Scholar 

  22. Giskeødegård GF, Bertilsson H, Selnæs KM, Wright AJ, Bathen TF, Viset T, Halgunset J, Angelsen A, Gribbestad IS, Tessem MB (2013) Spermine and citrate as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8(4):e62375

    Article  PubMed  PubMed Central  Google Scholar 

  23. Basharat M, Jafar M, deSouza NM, Payne GS (2014) Evaluation of short-TE (1)H MRSI for quantification of metabolites in the prostate. NMR Biomed 27(4):459–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Basharat M, Payne GS, Morgan VA, Parker C, Dearnaley D, deSouza NM (2015) TE = 32 ms vs TE = 100 ms echo-time (1)H-magnetic resonance spectroscopy in prostate cancer: tumor metabolite depiction and absolute concentrations in tumors and adjacent tissues. J Magn Reson Imaging 42(4):1086–1093

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cheng LL, Wu C, Smith MR, Gonzalez RG (2001) Non-destructive quantitation of spermine in human prostate tissue samples using HRMAS 1H NMR spectroscopy at 9.4 T. FEBS Lett 494(1–2):112–116

    Article  CAS  PubMed  Google Scholar 

  26. Costello LC, Franklin RB (1989) Prostate epithelial cells utilize glucose and aspartate as the carbon sources for net citrate production. Prostate 15(4):335–342

    Article  CAS  PubMed  Google Scholar 

  27. Costello LC, Franklin RB (2006) The clinical relevance of the metabolism of prostate cancer; zinc and tumor suppression: connecting the dots. Mol Cancer 5:17

    Article  PubMed  PubMed Central  Google Scholar 

  28. Costello LC, Franklin RB, Zou J, Naslund MJ (2015) Evidence that human prostate cancer is a ZIP1-deficient malignancy that could be effectively treated with a zinc ionophore (clioquinol) approach. Chemotherapy 4(2):152

    PubMed  PubMed Central  Google Scholar 

  29. Zaichick V, Zaichick S (2014) Age-related histological and zinc content changes in adult nonhyperplastic prostate glands. Age 36(1):167–181

    Article  CAS  PubMed  Google Scholar 

  30. McLean MA, Barrett T, Gnanapragasam VJ, Priest AN, Joubert I, Lomas DJ, Neal DE, Griffiths JR, Sala E (2011) Prostate cancer metabolite quantification relative to water in 1H-MRSI in vivo at 3 Tesla. Magn Reson Med 65(4):914–919

    Article  CAS  PubMed  Google Scholar 

  31. Scheenen TW, Heijmink SW, Roell SA, Hulsbergen-Van de Kaa CA, Knipscheer BC, Witjes JA, Barentsz JO, Heerschap A (2007) Three-dimensional proton MR spectroscopy of human prostate at 3 T without endorectal coil: feasibility. Radiology 245(2):507–516

    Article  PubMed  Google Scholar 

  32. Selnæs KM, Heerschap A, Jensen LR, Tessem MB, Schweder GJ, Goa PE, Viset T, Angelsen A, Gribbestad IS (2012) Peripheral zone prostate cancer localization by multiparametric magnetic resonance at 3 T: unbiased cancer identification by matching to histopathology. Invest Radiol 47(11):624–633

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Ministry of Health of the Czech Republic: Internal Grant Agency No. NT13017 and the grant project for development of research organization 00023001IKEM, Institutional support. We give thanks to Siemens for providing us with Work-In-Progress sequence GRESHIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monika Dezortova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dezortova, M., Jiru, F., Skoch, A. et al. The aging effect on prostate metabolite concentrations measured by 1H MR spectroscopy. Magn Reson Mater Phy 30, 65–74 (2017). https://doi.org/10.1007/s10334-016-0584-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-016-0584-x

Keywords

Navigation