Skip to main content
Log in

Multi-atlas-based fully automatic segmentation of individual muscles in rat leg

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Objective

To quantify individual muscle volume in rat leg MR images using a fully automatic multi-atlas-based segmentation method.

Materials and methods

We optimized a multi-atlas-based segmentation method to take into account the voxel anisotropy of numbers of MRI acquisition protocols. We mainly tested an image upsampling process along Z and a constraint on the nonlinear deformation in the XY plane. We also evaluated a weighted vote procedure and an original implementation of an artificial atlas addition. Using this approach, we measured gastrocnemius and plantaris muscle volumes and compared the results with manual segmentation. The method reliability for volume quantification was evaluated using the relative overlap index.

Results

The most accurate segmentation was obtained using a nonlinear registration constrained in the XY plane by zeroing the Z component of the displacement and a weighted vote procedure for both muscles regardless of the number of atlases. The performance of the automatic segmentation and the corresponding volume quantification outperformed the interoperator variability using a minimum of three original atlases.

Conclusion

We demonstrated the reliability of a multi-atlas segmentation approach for the automatic segmentation and volume quantification of individual muscles in rat leg and found that constraining the registration in plane significantly improved the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3D:

Standard 3D nonlinear registration process

SBS:

Slice-by-slice nonlinear registration process

2Dc:

2D constrained nonlinear registration process

R-:

Rescaled along Z

RO:

Relative overlap index

CV:

Coefficient of variation

ICC:

Intraclass coefficient

mv:

Majority vote procedure

wv:

Weighted vote procedure

z0:

No slice translation

z1:

1 slice translation

z2:

2 slice translation

DSC:

Dice similarity coefficient

References

  1. Park SW, Goodpaster BH, Strotmeyer ES, de Rekeneire N, Harris TB, Schwartz AV, Tylavsky FA, Newman AB (2006) Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes 55:1813–1818

    Article  CAS  PubMed  Google Scholar 

  2. Barbat-Artigas S, Rolland Y, Zamboni M, Aubertin-Leheudre M (2012) How to assess functional status: a new muscle quality index. J Nutr Health Aging 16:67–77

    Article  CAS  PubMed  Google Scholar 

  3. Metter EJ, Talbot LA, Schrager M, Conwit R (2002) Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 57:B359–B365

    Article  PubMed  Google Scholar 

  4. Tonson A, Ratel S, Le Fur Y, Cozzone P, Bendahan D (2008) Effect of maturation on the relationship between muscle size and force production. Med Sci Sports Exerc 40:918–925

    Article  PubMed  Google Scholar 

  5. Morse CI, Tolfrey K, Thom JM, Vassilopoulos V, Maganaris CN, Narici MV (2008) Gastrocnemius muscle specific force in boys and men. J Appl Physiol 104:469–474

    Article  PubMed  Google Scholar 

  6. Jubrias SA, Odderson IR, Esselman PC, Conley KE (1997) Decline in isokinetic force with age: muscle cross-sectional area and specific force. Pflüg Arch Eur J Physiol 434:246–253

    Article  CAS  Google Scholar 

  7. Hasson CJ, Kent-Braun JA, Caldwell GE (2011) Contractile and non-contractile tissue volume and distribution in ankle muscles of young and older adults. J Biomech 44:2299–2306

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hug F, Marqueste T, Le Fur Y, Cozzone PJ, Grélot L, Bendahan D (2006) Selective training-induced thigh muscles hypertrophy in professional road cyclists. Eur J Appl Physiol 97:591–597

    Article  PubMed  Google Scholar 

  9. Kalyani RR, Corriere M, Ferrucci L (2014) Age-related and disease-related muscle loss: the effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol 2:819–829

    Article  PubMed  PubMed Central  Google Scholar 

  10. Brown M, Hasser EM (1996) Complexity of age-related change in skeletal muscle. J Gerontol A Biol Sci Med Sci 51:B117–B123

    Article  CAS  PubMed  Google Scholar 

  11. Frontera WR, Reid KF, Phillips EM, Krivickas LS, Hughes VA, Roubenoff R, Fielding RA (2008) Muscle fiber size and function in elderly humans: a longitudinal study. J Appl Physiol 105:637–642

    Article  PubMed  PubMed Central  Google Scholar 

  12. Kesper K, Kornblum C, Reimann J, Lutterbey G, Schröder R, Wattjes MP (2009) Pattern of skeletal muscle involvement in primary dysferlinopathies: a whole-body 3.0-T magnetic resonance imaging study. Acta Neurol Scand 120:111–118

    Article  CAS  PubMed  Google Scholar 

  13. Akagi R, Takai Y, Ohta M, Kanehisa H, Kawakami Y, Fukunaga T (2009) Muscle volume compared to cross-sectional area is more appropriate for evaluating muscle strength in young and elderly individuals. Age Ageing 38:564–569

    Article  PubMed  Google Scholar 

  14. Mattei JP, Fur YL, Cuge N, Guis S, Cozzone PJ, Bendahan D (2006) Segmentation of fascias, fat and muscle from magnetic resonance images in humans: the DISPIMAG software. Magn Reson Mater Phy 19:275–279

    Article  CAS  Google Scholar 

  15. Positano V, Christiansen T, Santarelli MF, Ringgaard S, Landini L, Gastaldelli A (2009) Accurate segmentation of subcutaneous and intermuscular adipose tissue from MR images of the thigh. J Magn Reson Imaging 29:677–684

    Article  PubMed  Google Scholar 

  16. Klein CS, Rice CL, Marsh GD (2001) Normalized force, activation, and coactivation in the arm muscles of young and old men. J Appl Physiol 91:1341–1349

    CAS  PubMed  Google Scholar 

  17. Smeulders MJC, van den Berg S, Oudeman J, Nederveen AJ, Kreulen M, Maas M (2010) Reliability of in vivo determination of forearm muscle volume using 3.0 T magnetic resonance imaging. J Magn Reson Imaging 31:1252–1255

    Article  CAS  PubMed  Google Scholar 

  18. Nordez A, Jolivet E, Südhoff I, Bonneau D, de Guise JA, Skalli W (2009) Comparison of methods to assess quadriceps muscle volume using magnetic resonance imaging. J Magn Reson Imaging 30:1116–1123

    Article  PubMed  Google Scholar 

  19. Gilles B, Magnenat-Thalmann N (2010) Musculoskeletal MRI segmentation using multi-resolution simplex meshes with medial representations. Med Image Anal 14:291–302

    Article  PubMed  Google Scholar 

  20. Wang C, Teboul O, Michel F, Essafi S, Paragios N (2010) 3D knowledge-based segmentation using pose-invariant higher-order graphs. Med Image Comput Comput-Assist Interv 13:189–196

    PubMed  Google Scholar 

  21. Andrews S, Hamarneh G, Yazdanpanah A, HajGhanbari B, Reid WD (2011) Probabilistic multi-shape segmentation of knee extensor and flexor muscles. Med Image Comput Comput-Assist Interv 14:651–658

    PubMed  Google Scholar 

  22. Sdika M (2010) Combining atlas based segmentation and intensity classification with nearest neighbor transform and accuracy weighted vote. Med Image Anal 14:219–226

    Article  PubMed  Google Scholar 

  23. Rohlfing T, Brandt R, Menzel R, Maurer CR (2004) Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage 21:1428–1442

    Article  PubMed  Google Scholar 

  24. Isgum I, Staring M, Rutten A, Prokop M, Viergever MA, van Ginneken B (2009) Multi-atlas-based segmentation with local decision fusion–application to cardiac and aortic segmentation in CT scans. IEEE Trans Med Imaging 28:1000–1010

    Article  PubMed  Google Scholar 

  25. Klein S, van der Heide UA, Lips IM, van Vulpen M, Staring M, Pluim JPW (2008) Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med Phys 35:1407–1417

    Article  PubMed  Google Scholar 

  26. Karlsson A, Rosander J, Romu T, Tallberg J, Grönqvist A, Borga M, Dahlqvist Leinhard O (2015) Automatic and quantitative assessment of regional muscle volume by multi-atlas segmentation using whole-body water-fat MRI. J Magn Reson Imaging 41:1558–1569

    Article  PubMed  Google Scholar 

  27. Thomas MS, Newman D, Leinhard OD, Kasmai B, Greenwood R, Malcolm PN, Karlsson A, Rosander J, Borga M, Toms AP (2014) Test-retest reliability of automated whole body and compartmental muscle volume measurements on a wide bore 3T MR system. Eur Radiol 24:2279–2291

    Article  PubMed  Google Scholar 

  28. Giannesini B, Izquierdo M, Le Fur Y, Cozzone PJ, Fingerle J, Himber J, Künnecke B, Von Kienlin M, Bendahan D (2005) New experimental setup for studying strictly noninvasively skeletal muscle function in rat using 1H-magnetic resonance (MR) imaging and 31P-MR spectroscopy. Magn Reson Med 54:1058–1064

    Article  CAS  PubMed  Google Scholar 

  29. Sled JG, Zijdenbos AP, Evans AC (1998) A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 17:87–97

    Article  CAS  PubMed  Google Scholar 

  30. Zhang Y, Brady M, Smith S (2001) Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 20:45–57

    Article  CAS  PubMed  Google Scholar 

  31. Jenkinson M, Smith S (2001) A global optimisation method for robust affine registration of brain images. Med Image Anal 5:143–156

    Article  CAS  PubMed  Google Scholar 

  32. Sdika M (2008) A fast nonrigid image registration with constraints on the Jacobian using large scale constrained optimization. IEEE Trans Med Imaging 27:271–281

    Article  PubMed  Google Scholar 

  33. Artaechevarria X, Munoz-Barrutia A, Ortiz-de-Solorzano C (2009) Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Trans Med Imaging 28:1266–1277

    Article  PubMed  Google Scholar 

  34. Elliott MA, Walter GA, Gulish H, Sadi AS, Lawson DD, Jaffe W, Insko EK, Leigh JS, Vandenborne K (1997) Volumetric measurement of human calf muscle from magnetic resonance imaging. Magn Reson Mater Phy 5:93–98

    Article  CAS  Google Scholar 

  35. Cabezas M, Oliver A, Lladó X, Freixenet J, Cuadra MB (2011) A review of atlas-based segmentation for magnetic resonance brain images. Comput Methods Programs Biomed 104:e158–e177

    Article  PubMed  Google Scholar 

  36. Gubern-Mérida A, Kallenberg M, Martí R, Karssemeijer N (2012) Segmentation of the pectoral muscle in breast MRI using atlas-based approaches. Med Image Comput Comput-Assist Interv 15:371–378

    PubMed  Google Scholar 

  37. Morse CI, Degens H, Jones DA (2007) The validity of estimating quadriceps volume from single MRI cross-sections in young men. Eur J Appl Physiol 100:267–274

    Article  PubMed  Google Scholar 

  38. Tracy BL, Ivey FM, Jeffrey Metter E, Fleg JL, Siegel EL, Hurley BF (2003) A more efficient magnetic resonance imaging-based strategy for measuring quadriceps muscle volume. Med Sci Sports Exerc 35:425–433

    Article  PubMed  Google Scholar 

  39. Kent-Braun JA, Ng AV, Young K (2000) Skeletal muscle contractile and noncontractile components in young and older women and men. J Appl Physiol 88:662–668

    CAS  PubMed  Google Scholar 

Download references

Author’s contribution

Michael Sdika: project development, data management and data analysis; Anne Tonson: project development, data collection and data analysis; Yann Le Fur: data collection; Patrick J. Cozzone: data analysis; David Bendahan: data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Sdika.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

All procedures involving animals were performed according to the guidelines of the National Research Council Guide for the care and use of laboratory animals and the French law on the Protection of Animals.

Additional information

Michael Sdika and Anne Tonson have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sdika, M., Tonson, A., Le Fur, Y. et al. Multi-atlas-based fully automatic segmentation of individual muscles in rat leg. Magn Reson Mater Phy 29, 223–235 (2016). https://doi.org/10.1007/s10334-015-0511-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-015-0511-6

Keywords

Navigation