Skip to main content
Log in

Influence of the spinning rate in the HR-MAS pattern of mobile lipids in C6 glioma cells and in artificial oil bodies

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

To evaluate how spinning rate affects mobile lipid (ML) resonances visibility in HR-MAS spectra of C6 glioma cells and artificial oil bodies (AOB), as models of cytosolic lipid droplets.

Materials and methods

Using C6 cells and AOB of two different sizes, 780 ± 580 and 240 ± 293 nm, as models, we acquired HR-MAS pulse and acquire spectra at different spinning rates between 500 and 15,000 Hz, all at 37 °C.

Results

Sample spinning at 15,000 Hz increased by 2.3 and 4.6-fold with respect to 500 Hz spinning the area of resonances corresponding to ML at 0.88 and 1.28 ppm, respectively, for log phase C6 cells. Furthermore, postconfluent C6 cells displayed an increase of 2.5-fold at 0.88 ppm and 4.2-fold at 1.28 ppm. These changes were reversible upon low speed spinning. AOBs did show much lower ML area increases (1.4–1.5-fold) upon high-speed HR-MAS.

Conclusion

ML can be reversibly mobilized in C6 glioma cells by high-speed HR-MAS, partially unveiling the NMR “invisible” ML pool. A small part of the ML pool also shows reduced visibility in freely tumbling AOBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AOB:

Artificial oil bodies

ChCCp:

Choline containing compounds

HR-MAS:

High resolution-magic angle spinning

LB:

Lysogeny broth

LD:

Lipid droplets

ML:

Mobile lipids

PBS:

Phosphate buffered saline

PtdCho:

Phosphatidylcholine

TAG:

Triacylglycerides

TLC:

Thin layer chromatography

TMS:

Tetramethylsilane

References

  1. Hakumäki JM, Kauppinen RA (2000) 1H NMR visible lipids in the life and death of cells. Trends Biochem Sci 25:357–362

    Article  PubMed  Google Scholar 

  2. Chen JH, Enloe BM, Weybright P, Campbell N, Dorfman D, Fletcher CD, Cory DG, Singer S (2002) Biochemical correlates of thiazolidinedione-induced adipocyte differentiation by high-resolution magic angle spinning NMR spectroscopy. Magn Reson Med 48(4):10–602

    Article  Google Scholar 

  3. Barba I, Cabañas ME, Arús C (1999) The relationship between nuclear magnetic resonance-visible lipids, lipid droplets, and cell proliferation in cultured C6 cells. Cancer Res 59:1861–1868

    PubMed  CAS  Google Scholar 

  4. Mountford CE, Wright LC (1988) Organization of lipids in the plasma membranes of malignant and stimulated cells: a new model. Trends Biochem Sci 13:172–177

    Article  PubMed  CAS  Google Scholar 

  5. Rémy C, Fouilhe N, Barba I, Sam-Lai E, Lahrech H, Cucurella MG, Izquierdo M, Moreno A, Ziegler A, Massarelli R, Décorps M, Arús C (1997) Evidence that mobile lipids detected in rat brain glioma by 1H nuclear magnetic resonance correspond to lipid droplets. Cancer Res 57:407–414

    PubMed  Google Scholar 

  6. Quintero M, Cabañas ME, Arús C (2007) A possible cellular explanation for the NMR-visible mobile lipid (ML) changes in cultured C6 glioma cells with growth. Biochim Biophys Acta 177:31–44

    Google Scholar 

  7. Delikatny EJ, Chawla S, Leung DJ, Poptani H (2011) MR-visible lipids and the tumor microenviroment. NMR Biomed 24(6):592–611

    PubMed  CAS  Google Scholar 

  8. Zweytick D, Athesntaedt K, Daum G (2000) Intracellular lipid particles of eukaryotic cells. Biochim Biophys Acta 1469:101–120

    Article  PubMed  CAS  Google Scholar 

  9. Martin S, Parton RG (2006) Lipid droplets: a unified view of a dynamic organelle. Nat Rev Mol Cell Bio 7:373–378

    Article  CAS  Google Scholar 

  10. Pérez Y, Lahrech H, Cabañas ME, Barnadas R, Sabés M, Rémy C, Arús C (2002) Measurement by nuclear magnetic resonance diffusion of the dimensions of the mobile lipid compartment in C6 cells. Cancer Res 62:5672–5677

    PubMed  Google Scholar 

  11. Beckonert O, Coen M, Keun HC, Wang Y, Ebbels TMD, Holmes E, Lindon JC, Nicholson JK (2010) High-resolution magic-angle-spinning NMR spectroscopy for metabolic profiling of intact tissues. Nat Protoc 5:1019–1032

    Article  PubMed  CAS  Google Scholar 

  12. Lindon JC, Beckonert OP, Holmes E, Nicholson JK (2009) High-resolution magic angle spinning NMR spectroscopy: application to biomedical studies. Prog Nucl Mag Res Sp 55(2):79–100

    Article  CAS  Google Scholar 

  13. Martín-Sitjar J, Delgado-Goñi T, Valverde D, Cabañas, M, Nolis, P, Arús C (2008) Unveiling the “invisible” neutral lipid pool in cultured log phase C6 cells using HR-MAS at 37 °C. In: Proceedings of the 24th annual meeting, European Society for Magnetic Resonance in Medicine and Biology, pp 181–182

  14. Traikia M, Langlais DB, Cannarozzi GM, Devaux PF (1997) High-Resolution spectra of liposomes using MAS NMR. The case of intermediate-size vesicles. J Magn Reson 125:140–144

    Article  PubMed  CAS  Google Scholar 

  15. Chen MCM, Chyan CL, Lee TTT, Huang SH, Tzen JTC (2004) Constitution of stable artificial oil bodies with triacylglycerol, phospholipids and caleosin. J Agric Food Chem 52:3982–3987

    Article  PubMed  CAS  Google Scholar 

  16. Tai SSK, Chen MCM, Peng CC, Tzen JTC (2002) Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci Biotechnol Biochem 66(10):2146–2153

    Article  PubMed  CAS  Google Scholar 

  17. Peng CC, Lin IP, Lin CK, Tzen JTC (2003) Size and stability of reconstituted sesame oil bodies. Biotechnol Progr 19(5):1623–1626

    Article  CAS  Google Scholar 

  18. Tzen JTC, Huang AHC (1992) Surface structure and properties of plant seed oil bodies. J Cell Biol 117(2):327–335

    Article  PubMed  CAS  Google Scholar 

  19. Peng CC, Chen JCF, Shyu DJH, Chen MJ, Tzen JTC (2004) A system for purification of recombinant proteins in Escherichia coli via artificial oil bodies constituted with their oleosin-fused polypeptides. J Biotechnol 111:51–57

    Article  PubMed  CAS  Google Scholar 

  20. Liu TH, Chyan CL, Li FY, Tzen JT (2009) Stability of artificial oil bodies constituted with recombinant caleosins. J Agric Food Chem 57:2308–2313

    Article  PubMed  CAS  Google Scholar 

  21. Vuorela T, Catte A, Niemelä PS, Hall A, Hyvónen MT, Marrink SJ, Kattunen M, Vattulainen I (2010) Role of lipids in spheroidal high density lipoproteins. PLoS Comp Biol 6(10):e1000964

    Article  Google Scholar 

  22. Hevonoja T, Pentikäinen MO, Hyvönen MT, Kovanen PT, Ala-Korpela M (2000) Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochem Biophys Acta 1488(3):189–210

    Article  PubMed  CAS  Google Scholar 

  23. Valverde-Saubí D, Candiota AP, Molins MA, Feliz M, Godino O, Dávila M, Acebes JJ, Arús C (2010) Short-term temperature effect on the HRMAS spectra of human brain tumor biopsies and their pattern recognition analysis. Magn Reson Mater Phy 23(4):203–215

    Article  Google Scholar 

  24. Opstad KS, Bell BA, Griffiths JR, Howe FA (2008) An assessment of the effects of sample ischaemia and spinning time on the metabolic profile of brain tumour biopsy specimens as determined by high-resolution magic angle spinning 1H NMR. NMR Biomed 21:1138–1147

    Article  PubMed  CAS  Google Scholar 

  25. Deese AJ, Dratz EA, Hymel L, Fleischer S (1982) Proton NMR T1, T2, and T1 rho relaxation studies of native and reconstituted sarcoplasmic reticulum and phospholipid vesicles. Biophys J 37(1):16–207

    Article  Google Scholar 

  26. Shapiro YE (1988) The paramagnetic hydrophilic probing of colloidal systems by NMR spectroscopy. Russ Chem Rev 57:1253–1272

    Article  CAS  Google Scholar 

  27. Delikatny EJ, Cooper WA, Brammah S, Sathasivam N, Rideout DC (2002) Nuclear magnetic resonance-visible lipids induced by cationic lipophilic chemotherapeutic agents are accompanied by increased lipid droplet formation and damaged mitochondria. Cancer Res 62(5):1394–1400

    PubMed  CAS  Google Scholar 

  28. Griffin JL, Lehtimäki KK, Valonen PK, Gröhn OHJ, Kettunen MI, Ylä-Herttuala S, Pitkänen A, Nicholson JK, Kauppinen RA (2003) Assignment of 1H nuclear magnetic resonance visible polyunsaturated fatty acids in BT4C gliomas undergoing ganciclovir-thymidine kinase gene therapy-induced programmed cell death. Cancer Res 63:3195–3201

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Juana Martín was the recipient of a PhD fellowship from the Ministerio de Ciencia e Innovación (Spain) associated to project SAF2008-03323. We thank the Summer Program in Taiwan for contributing to the J.M. visit at the National Chung Hsing University group of Prof Jason Tzen. This work was supported by the Spanish Ministerio de Ciencia e Innovación (SAF2008-03323 and SAF2011-23870). CIBER-BBN is an initiative of Instituto de Salud Carlos III, Spain, which co-funded with EU-funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carles Arús.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martín-Sitjar, J., Delgado-Goñi, T., Cabañas, M.E. et al. Influence of the spinning rate in the HR-MAS pattern of mobile lipids in C6 glioma cells and in artificial oil bodies. Magn Reson Mater Phy 25, 487–496 (2012). https://doi.org/10.1007/s10334-012-0327-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0327-6

Keywords

Navigation