Skip to main content

Advertisement

Log in

Multi-Slice DCE-MRI Data Using P760 Distinguishes Between Metastatic and Non-Metastatic Rodent Prostate Tumors

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

An intermediate molecular weight contrast agent P760 was used to investigate the ability of multi-slice dynamic contrast-enhanced MRI (DCE-MRI) to distinguish metastatic from non-metastatic rodent prostate tumors. Non-metastatic AT2.1 and metastatic AT3.1 prostate tumors originally derived from the Dunning prostate cancer model were implanted on the hind leg of Copenhagen rats. Multi-sliced DCE-MRI data were acquired on a SIGNA 1.5 T scanner and analyzed using a recently developed empirical mathematical model. The P760 multi-slice DCE-MRI data in combination with the empirical mathematical model successfully distinguished between metastatic and non-metastatic rodent prostate tumors. Specifically, fitting the data with the empirical model showed that metastatic tumors had significantly faster contrast media uptake (p<0.001) and slower washout rates (p<0.01) than non-metastatic tumors

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. den Boer JA, Hoenderop RK, Smink J, Dornseiffen G, Koch PW, Mulder JH, Slump CH, Volker ED, de Vos RA (1997) Pharmacokinetic analysis of Gd-DTPA enhancement in dynamic three-dimensional MRI of breast lesions. J Magn Reson Imaging 7:702–715

    Article  PubMed  CAS  Google Scholar 

  2. Kuhl CK, Mielcareck P, Klaschik S, Leutner C, Wardelmann E, Gieseke J, Schild HH (1999) Dynamic breast MR imaging: are signal intensity time course data useful for differential diagnosis of enhancing lesions?. Radiology 211:101–110

    PubMed  CAS  Google Scholar 

  3. Padhani AR, Gapinski CJ, Macvicar DA, Parker GJ, Suckling J, Revell PB, Leach MO, Dearnaley DP, Husband JE (2000) Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 55:99–109

    Article  PubMed  CAS  Google Scholar 

  4. Martincich L, Montemurro F, De Rosa G, Marra V, Ponzone R, Cirillo S, Gatti M, Biglia N, Sarotto I, Sismondi P, Regge D, Aglietta M (2004) Monitoring response to primary chemotherapy in breast cancer using dynamic contrast-enhanced magnetic resonance imaging. Breast Cancer Res Treat 83:67–76

    Article  PubMed  Google Scholar 

  5. Brix G, Kiessling F, Lucht R, Darai S, Wasser K, Delorme S, Griebel J (2004) Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn Reson Med 52:420–429

    Article  PubMed  Google Scholar 

  6. Turetschek K, Preda A, Novikov V, Brasch RC, Weinmann HJ, Wunderbaldinger P, Roberts TP (2004) Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J Magn Reson Imaging 20:138–144

    Article  PubMed  Google Scholar 

  7. Preda A, Novikov V, Moglich M, Turetschek K, Shames DM, Brasch RC, Cavagna FM, Roberts TP (2004) MRI monitoring of Avastin antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer. J Magn Reson Imaging 20:865–873

    Article  PubMed  Google Scholar 

  8. Preda A, Novikov V, Moglich M, Floyd E, Turetschek K, Shames DM, Roberts TP, Corot C, Carter WO, Brasch RC (2005) Magnetic resonance characterization of tumor microvessels in experimental breast tumors using a slow clearance blood pool contrast agent (carboxymethyldextran-A2-Gd-DOTA) with histopathological correlation. Eur Radiol

  9. Pathak AP, Artemov D, Ward BD, Jackson DG, Neeman M, Bhujwalla ZM (2005) Characterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging. Cancer Res 65:1425–1432

    Article  PubMed  CAS  Google Scholar 

  10. Henderson E, Rutt BK, Lee TY (1998) Temporal sampling requirements for the tracer kinetics modeling of breast disease. Magn Reson Imaging 16:1057–1073

    Article  PubMed  CAS  Google Scholar 

  11. Kuhl CK, Schild HH, Morakkabati N (2005) Dynamic bilateral contrast-enhanced MR imaging of the breast: trade-off between spatial and temporal resolution. Radiology 236:789–800

    Article  PubMed  Google Scholar 

  12. Shames DM, Kuwatsuru R, Vexler V, Muhler A, Brasch RC (1993) Measurement of capillary permeability to macromolecules by dynamic magnetic resonance imaging: a quantitative noninvasive technique. Magn Reson Med 29:616–622

    Article  PubMed  CAS  Google Scholar 

  13. Weissleder R, Cheng HC, Marecos E, Kwong K, Bogdanov AJ (1998) Non-invasive in vivo mapping of tumour vascular and interstitial volume fractions. Eur J Cancer 34:1448–1454

    Article  PubMed  CAS  Google Scholar 

  14. Brasch RC, Daldrup H, Shames D, Wendland M, Okuhata Y, Rosenau W (1998) Macromolecular contrast media-enhanced MRI estimates of microvascular permeability correlate with histopathologic tumor grade. Acad Radiol 5 Suppl 1:S2–5

    Article  PubMed  Google Scholar 

  15. Turetschek K, Floyd E, Shames DM, Roberts TP, Preda A, Novikov V, Corot C, Carter WO, Brasch RC (2001) Assessment of a rapid clearance blood pool MR contrast medium (P792) for assays of microvascular characteristics in experimental breast tumors with correlations to histopathology. Magn Reson Med 45:880–886

    Article  PubMed  CAS  Google Scholar 

  16. Dafni H, Israely T, Bhujwalla ZM, Benjamin LE, Neeman M (2002) Overexpression of vascular endothelial growth factor 165 drives peritumor interstitial convection and induces lymphatic drain: magnetic resonance imaging, confocal microscopy, and histological tracking of triple-labeled albumin. Cancer Res 62:6731–6739

    PubMed  CAS  Google Scholar 

  17. Turetschek K, Floyd E, Helbich T, Roberts TP, Shames DM, Wendland MF, Carter WO, Brasch RC (2001) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242

    Article  PubMed  CAS  Google Scholar 

  18. Corot C, Port M, Raynal I, Dencausse A, Schaefer M, Rousseaux O, Simonot C, Devoldere L, Lin J, Foulon M, Bourrinet P, Bonnemain B, Meyer D (2000) Physical, chemical, and biological evaluations of P760: a new gadolinium complex characterized by a low rate of interstitial diffusion. J Magn Reson Imaging 11:182–191

    Article  PubMed  CAS  Google Scholar 

  19. Larsson HB, Stubgaard M, Frederiksen JL, Jensen M, Henriksen O, Paulson OB (1990) Quantitation of blood-brain barrier defect by magnetic resonance imaging and gadolinium-DTPA in patients with multiple sclerosis and brain tumors. Magn Reson Med 16:117–131

    Article  PubMed  CAS  Google Scholar 

  20. Brix G, Semmler W, Port R, Schad LR, Layer G, Lorenz WJ (1991) Pharmacokinetic parameters in CNS Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15:621–628

    Article  PubMed  CAS  Google Scholar 

  21. Tofts PS (1997) Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. J Magn Reson Imaging 7:91–101

    Article  PubMed  CAS  Google Scholar 

  22. Port RE, Knopp MV, Hoffmann U, S. M-Z, Brix G (1999) Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging 10:233–241

    Article  PubMed  CAS  Google Scholar 

  23. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, Larsson HB, Lee TY, Mayr NA, Parker GJ, Port RE, Taylor J, Weisskoff RM (1999) Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging 10:223–232

    Article  PubMed  CAS  Google Scholar 

  24. Su MY, Jao JC, Nalcioglu O (1994) Measurement of vascular volume fraction and blood-tissue permeability constants with a pharmacokinetic model: studies in rat muscle tumors with dynamic Gd-DTPA enhanced MRI. Magn Reson Med 32:714–724

    Article  PubMed  CAS  Google Scholar 

  25. Moate PJ, Dougherty L, Schnall MD, Landis RJ, Boston RC (2004) A modified logistic model to describe gadolinium kinetics in breast tumors. Magn Reson Imaging 22:467–473

    Article  PubMed  CAS  Google Scholar 

  26. Fan X, Medved M, River JN, Zamora M, Corot C, Robert P, Bourrinet P, Lipton M, Culp RM, Karczmar GS (2004) New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magn Reson Med 51:487–494

    Article  PubMed  CAS  Google Scholar 

  27. Tennant TR, Kim H, Sokoloff M, Rinker-Schaeffer CW (2000) The Dunning model. Prostate 43:295–302

    Article  PubMed  CAS  Google Scholar 

  28. Isaacs JT, Isaacs WB, Feitz WF, Scheres J (1986) Establishment and characterization of seven Dunning rat prostatic cancer cell lines and their use in developing methods for predicting metastatic abilities of prostatic cancers. Prostate 9:261–281

    Article  PubMed  CAS  Google Scholar 

  29. Medved M, Karczmar G, Yang C, Dignam J, Gajewski TF, Kindler H, Vokes E, MacEneany P, Mitchell MT, Stadler WM (2004) Semiquantitative analysis of dynamic contrast enhanced MRI in cancer patients: Variability and changes in tumor tissue over time. J Magn Reson Imaging 20:122–128

    Article  PubMed  Google Scholar 

  30. Workie DW, Dardzinski BJ, Graham TB, Laor T, Bommer WA, O’Brien KJ (2004) Quantification of dynamic contrast-enhanced MR imaging of the knee in children with juvenile rheumatoid arthritis based on pharmacokinetic modeling. Magn Reson Imaging 22:1201–1210

    Article  PubMed  Google Scholar 

  31. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1997) Numerical recipes in C: The art of scientific computing. Cambridge University Press, Oxford

    Google Scholar 

  32. Knopp MV, Weiss E, Sinn HP, Mattern J, Junkermann H, Radeleff J, Magener A, Brix G, Delorme S, Zuna I, van Kaick G (1999) Pathophysiologic basis of contrast enhancement in breast tumors. J Magn Reson Imaging 10:260–266

    Article  PubMed  CAS  Google Scholar 

  33. Bhujwalla ZM, Artemov D, Natarajan K, Ackerstaff E, Solaiyappan M (2001) Vascular differences detected by MRI for metastatic versus nonmetastatic breast and prostate cancer xenografts. Neoplasia 3:143–153

    Article  PubMed  CAS  Google Scholar 

  34. Evelhoch JL (1999) Key factors in the acquisition of contrast kinetic data for oncology. J Magn Reson Imaging 10:254–259

    Article  PubMed  CAS  Google Scholar 

  35. Kovar DA, Lewis M, Karczmar GS (1998) A new method for imaging perfusion and contrast extraction fraction: input functions derived from reference tissues. J Magn Reson Imaging 8:1126–1134

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobing Fan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, X., Medved, M., Foxley, S. et al. Multi-Slice DCE-MRI Data Using P760 Distinguishes Between Metastatic and Non-Metastatic Rodent Prostate Tumors. Magn Reson Mater Phy 19, 15–21 (2006). https://doi.org/10.1007/s10334-005-0022-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-005-0022-y

Keywords

Navigation