Skip to main content

Advertisement

Log in

Selenium in soils under climate change, implication for human health

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Global climate changes can alter the suitable geographical range of different crops, leading to possible changes in cropping pattern and its extent in some regions. For example, temperature changes can interact very closely with changes in availability of water and soil nutrients, and crop growth cycle. The consequences of the biophysical impacts of climate changes will be influenced by the human responses to these impacts. There is a strong link between soils and human health, and these soils per se are controlled by climate changes. The human health is very close to both selenium (Se) element and climate changes. It is estimated that about 37–40 % of the total Se emissions to the atmosphere are due to the anthropogenic activities. Those anthropogenic activities, which are sources of Se, include coal and oil combustion, mining activities, the utilization of rock phosphates as a fertilizer and the application of sewage sludge to agricultural land. It was thought that selenium was a toxicant for a long time due to inadequate analytical data. In the recent past, Se has become very important in environmental biogeochemistry because of its influence on human health. Although Se is an essential nutrient for animals and humans, it is also toxic at high doses. Furthermore, the range between Se deficiency, lower than 40 μg day−1, and toxicity, higher than 400 μg day−1, is narrow. Selenium deficiency has been linked to several human diseases including multiple sclerosis, muscular dystrophy, heart disease, immune system, cancer and reproductive disorders. On the other hand, Se toxicity can lead to hair and nail loss and disruption of the nervous and digestive systems in animals and humans. Despite the obvious connections between Se element and human health under climate changes, there has not been a great amount of research done in this area. So, more and more studies should be carried out to enhance and protect human health. Therefore, this article reviews the biological and economic dimensions of the effects of Se element on human health under climate changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abrahams PW (2002) Soils: their implications to human health. Sci Total Environ 291:1–32

    CAS  Google Scholar 

  • Abrahams PW (2006) Soil, geography and human disease: a critical review of the importance of medical cartography. Prog Phys Geogr 30(4):490–512

    Google Scholar 

  • Abreu MM, Bech J, Carvalho LC, Santos E (2014) Potential hazardous elements fluxes from soil to plants and the food chain. In: Bini C, Bech J (eds) PHEs, Environment and human health. Springer, Dordrecht, pp 309–337. doi:10.1007/978-94-017-8965-3_8

  • Ahsan U, Kamran Z, Raza I, Ahmad S, Babar W, Riaz MH, Iqbal Z (2014) Role of selenium in male reproduction—a review. Anim Reprod Sci 146:55–62. doi:10.1016/j.anireprosci.2014.01.009

    CAS  Google Scholar 

  • Alcamo J, Dronin N, Endejan M, Golubev G, Kirilenko A (2007) A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Glob Environ Change 17(3–4):429–444

    Google Scholar 

  • Allaway WH, Moore DP, Oldfield JE, Muth OH (1966) Movement of physiological levels of selenium from soils through plants to animals. J Nutr 88:411–418

    CAS  Google Scholar 

  • Allmang C, Krol A (2006) Selenoprotein synthesis: UGA does not end the story. Biochimie 88:1561–1571

    CAS  Google Scholar 

  • Amouroux D, Liss PS, Tessier E, Hamren-Larsson M, Donard OFX (2001) Role of oceans as biogenic sources of selenium. Earth Planet Sci Lett 189:277–283

    CAS  Google Scholar 

  • Amweg EL, Stuart DL, Weston DP (2003) Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water. Aquat Toxicol 63:13–25

    CAS  Google Scholar 

  • Andersen AB (2009) Field-to-fork perspective soil nutrition/biofortification as the root of human health and well-being. In: Bañuelos GS, Lin ZQ (eds) Development and uses of biofortified agricultural products. Taylor & Francis Group, LLC, Boca Raton, pp 279–282

    Google Scholar 

  • Arnell NW, Livermore MJL, Kovats S, Levy PE, Nicholls R, Parry ML, Gaffin SR (2004) Climate and socio-economic scenarios for global-scale climate change impacts assessments: characterising the SRES storylines. Glob Environ Change 14(1):3–20

    Google Scholar 

  • Arthur JR, Beckett GJ (1999) Thyroid function. Br Med Bull 55:658–668

    CAS  Google Scholar 

  • Bañuelos GS, Lin ZQ, Arroyo I, Terry N (2005) Selenium volatilization in vegetated agricultural drainage sediment from the San Luis Drain, Central California. Chemosphere 60:1203–1213

    Google Scholar 

  • Bañuelos GS, Stushnoff C, Walse SS, Zulen T, Yang SI, Pickering I et al (2012) Biofortified, selenium enriched fruit and cladode from three Opuntia cactus pear cultivars grown on agricultural drainage sediment for use in nutraceutical foods. Food Chem 135:9–16

    Google Scholar 

  • Bañuelos GS, Lin ZQ, Yin X (2014) Selenium in the environment and human health. Taylor & Francis Group, London

    Google Scholar 

  • Bañuelos GS, Arroyo I, Pickering IJ, Yang SI, Freeman JL (2015) Selenium biofortification of broccoli and carrots grown in soil amended with Se-enriched hyperaccumulator Stanleya pinnata. Food Chem 166:603–608. doi:10.1016/j.foodchem.2014.06.071

    Google Scholar 

  • Bänziger MJL (2000) The potential for increasing the iron and zinc density through plant-breeding. Food Nutr Bull 21:397–400

    Google Scholar 

  • Barnett TP, Adam JC, Lettenmaier DP (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 438(7066):303–309

    CAS  Google Scholar 

  • Beath OA (1982) The story of selenium in Wyoming. Univ Wyo Agric Exp Stat Bull 774

  • Beebe S, Gonzalez AV, Rengifo J (2000) Research on trace minerals in the common bean. Food Nutr Bull 21:387–391

    Google Scholar 

  • Beladel B, Nedjimi B, Mansouri A, Tahtat D, Belamri M, Tchanchane A, Khelfaoui F, Benamar MEA (2013) Selenium content in wheat and estimation of the selenium daily intake in different regions of Algeria. Appl Radiat Isot 71:7–10. doi:10.1016/j.apradiso.2012.09.009

    CAS  Google Scholar 

  • Benjamin MM (1983) Adsorption and surface precipitation on amorphous iron oxyhydroxide. Environ Sci Technol 17:686–692

    CAS  Google Scholar 

  • Bitterli C, Bañuelos GS, Schulin R (2010) Use of transfer factors to characterize uptake of selenium by plants. J Geochem Explor 107:206–216

    CAS  Google Scholar 

  • Blair MW, Monserrate F, Beebe SE, Restrepo J, Flores JO (2010) Registration of high mineral common bean germplasm lines NUA35 and NUA56 from the red-mottled seed class. J Plant Regist 4:55–59

    Google Scholar 

  • Bonsmann SS, Hurrell RF (2009) The impact of trace elements from plants on human nutrition: a case for biofortification. In: Bañuelos GS, Lin ZQ (eds) Development and uses of biofortified agricultural products. Taylor & Francis Group, LLC, Boca Raton, pp 1–15

    Google Scholar 

  • Bouis HE (1999) Economics of enhanced micronutrient density in food staples. Field Crops Res 60:165–173

    Google Scholar 

  • Bouis HE, Islam Y (2011) Biofortification: leveraging agriculture to reduce hidden hunger. International Food Policy Research Institute (IFPRI), Project Papers and Notes, 2020 Conference Brief no. 19, HarvestPlus, Chapter 10, pp 83–92

  • Bouis HE, Islam Y (2012) Biofortification: leveraging agriculture to reduce hidden hunger. In: Fan S, Pandya-Lorch R (eds) Chapter 10. International Food Policy Research Institute (IFPRI), Washington, USA, pp 83–92

  • Bouis HE, Welch RM (2010) Biofortification: a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32. doi:10.2135/cropsci2009.09.0531

    Google Scholar 

  • Bouis HE, Hotz C, McClafferty B, Meenakshi JV, Pfeiffer WH (2011) Biofortification: a new tool to reduce micronutrient malnutrition. Food Nutr Bull 32(Supplement 1):31S–40S

    Google Scholar 

  • Bouis HE, Low J, McEwan M, Tanumihardjo S (2013) Biofortification: evidence and lessons learned linking agriculture and nutrition. The Food and Agriculture Organization of the United Nations (FAO) and the World Health Organization (WHO)

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    CAS  Google Scholar 

  • Brevik EC (2009) Soil, food security and human health. In: Verheye WH (ed) Soils, plant growth and crop production. Encyclopedia of life support systems (EOLSS), developed under the auspices of the UNESCO. Eolss, Oxford. http://www.eolss.net. Aug 23 2012

  • Brevik EC, Burgess LC (2013) Soils and human health. Taylor & Francis Group, LLC, CRC Press, Boca Raton, FL

  • Broadley MR, White PJ, Bryson RJ, Meacham MC, Bowen HC, Johnson SE, Hawkesford MJ, McGrath SP, Zhao FJ, Breward N, Harriman M, Tucker M (2006) Biofortification of U.K. food crops with selenium (Se). Proc Nutr Soc 65:169–181. doi:10.1079/PNS2006490

    CAS  Google Scholar 

  • Brown KM, Arthur JR (2001) Selenium, selenoproteins and human: a review. Public Health Nutr 4:593–599

    CAS  Google Scholar 

  • Carvalho SMP, Vasconcelos MW (2013) Producing more with less: strategies and novel technologies for plant-based food biofortification. Food Res Int. doi:10.1016/j.foodres.2012.12.021

    Google Scholar 

  • Choi Y, Kim J, Lee HS, Kim CI, Hwang IK, Park HK, Oh CH (2009) Selenium content in representative Korean foods. J Food Compos Anal 22:117–122

    CAS  Google Scholar 

  • Christophersen OA, Lyons G, Haug A, Steinnes E (2013) Selenium. In: Alloway BJ (ed) Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Environmental Pollution 22. Springer, Dordrecht, pp 429–463. doi:10.1007/978-94-007-4470-7_16

  • Clark LC, Combs GF Jr, Turnbull BW, Slate EH, Chalker DK, Chow J, Davis LS, Glover RA, Graham GF, Gross EG, Krongrad A, Lesher JL Jr, Park HK, Sanders BB Jr, Smith CL, Taylor JR (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. A randomized controlled trial. Nutritional prevention of cancer study group. J Am Med Assoc 276:1957–1963

    CAS  Google Scholar 

  • Combs GF Jr (2001) Selenium in global food systems. Br J Nutr 85(5):517–547

    CAS  Google Scholar 

  • Combs GF Jr (2013) Geological impacts on nutrition. In: In: Selinus O et al (eds) Essentials of medical geology: revised edition. Springer, Dordrecht, pp 179–194. doi:10.1007/978-94-007-4375-5_8

  • Crounse RG, Pories WJ, Bray JT, Mauger RL (1983) Geochemistry and man: health and disease.1. Essential elements. In: Thornton I (ed) Applied environmental geochemistry. Academic Press, London, pp 267–308

    Google Scholar 

  • Cruse RM, Lee S, Fenton TE, Wang E, Laflen J (2013) Soil renewal and sustainability. In: Lal R, Stewart BA (eds) Principles of sustainable soil management in agroecosystems. Advances in soil science series. Taylor & Francis Group, LLC, Boca Raton, pp 477–500

    Google Scholar 

  • de Filippis LF (2010) Biochemical and molecular aspects in phytoremediation of selenium. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer, Dodrecht, pp 193–226. doi:10.1007/978-90-481-9370-7_10

  • de Souza MP, Chu D, Zhao M, Zayed AM, Ruzin SE, Schichnes D, Terry N (1998) Rhizosphere bacteria enhance selenium accumulation and volatilization by Indian mustard. Plant Physiol 119:565–574

    Google Scholar 

  • Deuraseh N (2010) Earth in the Holy Qur’an: how to protect and maintain it? J Hadhari 2(2):73–88. http://www.ukm.my/jhadhari/makalah/v2n22010/makalah-v2n2-n4.pdf/19.5.2013

  • Diplock A (1992) Selenium, antioxidant nutrition, and human diseases. Biol Trace Elem Res 33:155–156

    Google Scholar 

  • DoE, UK Department of the Environment (1996) Code of practice for agriculture use of sewage sludge. DoE, London

    Google Scholar 

  • Doell P, Siebert S (2002) Global modeling of irrigation water requirements. Water Resour Res 38(4):1037

    Google Scholar 

  • Domokos-Szabolcsy É (2011) Biological effect and fortification possibilities of inorganic selenium forms in higher plants. PhD thesis, University of Debrecen Debreceni Egyetem, Kerpely Kálmán Doktoral School

  • Domokos-Szabolcsy É, Holb I, Prokisch J, Babka B, Zsuzsanna V, Fári M (2005) Impact of sodium-selenate on the growth of radish (Raphanus sativus L.) seedlings in vitro. Int J Hortic Sci. ISSN:1585-0404. 11(2):113-117

  • Domokos-Szabolcsy É, Prokisch J, Kovacs B, Marosi S, Holb IJ, Fari M (2006) Enhancing the selenium content of green onion made from bulb in hydroponic culture. International symposium on trace elements in the food chain, Budapest, 2006. In: Szilágyi M, Szentmihályi K (eds) Proceedings. Working Committee on Trace Elements of the Hungarian Academy of Sciences (HAS) and Institute of Materials and Environmental Chemistry of the HAS, Budapest. ISBN 963 7067 132

  • Domokos-Szabolcsy É, Prokisch J, Sztrik A, Barnócki A, Fári M (2011) Variation in selenium tolerance among two cultivars in closed fortification system. Int J Hortic Sci 17(1–2):75–77

  • Droogers P (2004) Adaptation to climate change to enhance food security and preserve environmental quality: example for southern Sri Lanka. Agric Water Manag 66(1):15–33

    Google Scholar 

  • Droogers P, Aerts J (2005) Adaptation strategies to climate change and climate variability: a comparative study between seven contrasting river basins. Phys Chem Earth Parts A/B/C 30(6–7):339–346

    Google Scholar 

  • Dundar MS, Altundag H (2004) Selenium content of Turkish hazelnut varieties Kara Fındık, Tombul and Delisava. J Food Compos Anal 17:707–712

    CAS  Google Scholar 

  • El Mehdawi AF, Pilon-Smits EAH (2012) Ecological aspects of plant selenium hyperaccumulation. Plant Biol 14:1–10. doi:10.1111/j.1438-8677.2011.00535.x

    Google Scholar 

  • El Mehdawi AF, Cappa JJ, Fakra SC, Self J, Pilon-Smits EAH (2012) Interactions of selenium hyperaccumulators and nonaccumulators during co-cultivation on seleniferous or nonseleniferous soil—the importance of having good neighbors. New Phytol 194:264–277. doi:10.1111/j.1469-8137.2011.04043.x

    Google Scholar 

  • El-Ramady HR (2014) Integrated nutrient management and postharvest of crops. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 13. Springer International, Switzerland, pp 163–274. doi:10.1007/978-3-319-00915-5_8

  • El-Ramady H, Alshaal T, Domokos-Szabolcsy É, Shalaby T, Bayoumi Y, Elhawat N, Sztrik A, Prokisch J, Fári M (2014a) Selenium and its role in higher plants. In: Lichtfouse E (ed), Environmental chemistry for a sustainable world, vol 6. Springer (in press)

  • El-Ramady HR, Abd Alla N, Alshaal T, Elhawat N, Domokos-Szabolcsy É, Prokisch J, Sztrik A, Fári M (2014b) Nano-selenium: from in vitro to micro farm experiments. Int J Environ Qual 13:2281–4485

  • El-Ramady H, Alshaal T, Shehata SA, Domokos-Szabolcsy É, Elhawat N, Prokisch J, Fári M, Marton L (2014c) Soil science, plant nutrition and micro-farms. In: Lichtfouse E (ed) Sustainable agriculture reviews, vol 14. Springer International, Switzerland. doi:10.1007/978-3-319-06016-3_12

  • Elrashidi MA, Adriano DC, Workman SM, Lindsay WL (1987) Chemical equilibria of selenium in soils—a theoretical development. Soil Sci 144:141–152

    CAS  Google Scholar 

  • Eswaran H, Reich PF, Padmanabhan E (2012) World soil resources opportunities and challenges. In: Lal R, Stewart BA (eds) World soil resources and food security. Advances in soil science series. Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  • Ferrarese M, Sourestani MM, Quttrini E, Schiavi M, Ferrante A (2012) Biofortification of spinach plants applying selenium in the nutrient solution of floating system. In: Vegetable crops research bulletin, vol 76, pp 127–136. ISSN 1506-9427. ISSN 1898-7761. doi:10.2478/v10032-012-0009-y

  • Finley JW (2006) Bioavailability of selenium from foods. Nutr Rev 64:146–151

    Google Scholar 

  • Flemming GA (1962) Some factor affecting the uptake of selenium by plants. Iris J Agric Res 1:131–138

    Google Scholar 

  • Foresta C, Flohe L, Garolla A, Roveri A, Ursini F, Maiorino M (2002) Male fertility is linked to the selenoprotein phospholipid hydroper-oxide glutathione peroxidase. Biol Reprod 67:967–971

    CAS  Google Scholar 

  • Frankenberger WT, Karlson U (1994) Microbial volatilization of selenium from soils and sediments. In: Frankenberger WT, Benson S (eds) Selenium in the Environment. Marcel Dekker, New York, pp 369–387

    Google Scholar 

  • Frossard E, Bucher M, Mächler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe, Zn and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    CAS  Google Scholar 

  • Galeas ML, Zhang LH, Freeman JL, Wegner M, Pilon-Smits EAH (2007) Seasonal fluctuations of selenium and sulfur accumulation in selenium hyperaccumulators and related non-accumulators. New Phytol 173:517–525

    CAS  Google Scholar 

  • Garrett RG (2013) Natural distribution and abundance of elements. In: Selinus Olle (ed) Essentials of medial geology. Springer, Dordrecht, pp 48–57

    Google Scholar 

  • Geering HR, Cary EE, Jones LHP, Alloway WH (1968) Solubility and redox criteria for possible forms of selenium in soils. Soil Sci Soc Am Proc 32(1):35–40

    CAS  Google Scholar 

  • Germ M, Stibilj V, Kreft I (2007) Metabolic importance of selenium for plants. Eur J Plant Sci Biotechnol 1(1):91–97

    Google Scholar 

  • Gissel-Nielsen G (1975) Selenium concentration in Danish forage crops. Acta Agric Scand 25:216–220

    CAS  Google Scholar 

  • Gladney ES, Zoller WH, Jones AG, Gordon GE (1974) Composition and size distributions of atmospheric particulate matter in the Boston area. Environ Sci Technol 8:551–557

    CAS  Google Scholar 

  • Graham RD, Welch RM, Saunders DA, Ortiz-Monasterio I, Bouis HE, Bonierbale M, de Haan S, Burgos G, Thiele G, Liria R, Meisner CA, Beebe SE, Potts MJ, Kadian M, Hobbs PR, Gupta RK, Twomlow S (2007) Nutritious subsistence food systems. Adv Agron 92:1–74

    CAS  Google Scholar 

  • Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. J Nutr 132(3):500S–502S

  • Gregory PJ, Ingram JSI (2000) Global change and food and forest production: future scientific challenges. Agric Ecosyst Environ 82:3–14. doi:10.1016/S0167-8809(00)00212-7

    Google Scholar 

  • Gregory PJ, Ingram JSI, Brklacich M (2005) Climate change and food security. Philos Trans R Soc B 360:2139–2148. doi:10.1098/rstb.2005.1745

    CAS  Google Scholar 

  • Grusak MA, Cakmak I (2005) Methods to improve the crop delivery of minerals to humans and livestock. In: Broadley MR, White PJ (eds) Plant nutritional genomics. Blackwell, New York, pp 265–286

    Google Scholar 

  • Gupta UC, Gupta SC (2014) Sources and deficiency diseases of mineral nutrients in human health and nutrition: a Review. Pedosphere 24(1):13–38

    CAS  Google Scholar 

  • Gupta UC, Winter KA, Sunderson JB (1993) Selenium content of barley as in fluenced by selenite and selenate enriched fertilizers. Commun Soil Sci Plant Anal 24:1165–1170

    CAS  Google Scholar 

  • Hanjra MA, Qureshi ME (2010) Global water crisis and future food security in an era of climate change. Food Policy 35:365–377. doi:10.1016/j.foodpol.2010.05.006

    Google Scholar 

  • Hartikainen H (2005) Biogeochemistry of selenium and its impact on food chain quality and human health. J Trace Elem Med Biol 18(4):309–318

    CAS  Google Scholar 

  • HarvestPlus (2006) Biofortified maize. http://www.dfid.gov.uk/r4d/PDF/Outputs/Misc_Crop/maize.pdf: Houston. Accessed May 2011

  • Hatfield DL, Berry MJ, Gladyshev VN (2012) Selenium: its molecular biology and role in human health, 3rd edn. Springer, Dodrecht

    Google Scholar 

  • Haug A, Graham RD, Christophersen OA, Lyons G (2007) How to use the world’s scarce selenium resources efficiently to increase the selenium concentration in food. Microb Ecol Health Dis 19:209–228

    CAS  Google Scholar 

  • Hillel D (2005) Civilization, role of soils. In: Hillel D, Hatfield JL, Scow KM, Powlson DS, Singer MJ, Rosenzweig C, Sparks DL (eds) Encyclopedia of soils in the environment. Elsevier Ltd., Oxford, pp 199–204

    Google Scholar 

  • Hoddinott J (2012) Agriculture, health, and nutrition: toward conceptualizing the linkages. In: Fan S, Pandya-Lorch R (eds) Chapter 2. International Food Policy Research Institute (IFPRI), Washington, pp 13–20

  • Hotz C, McClafferty B (2007) From harvest to health: challenges for developing biofortified staple foods and determining their impact on micronutrient status. Food Nutr Bull 28:S271–S279

    Google Scholar 

  • Hough RL (2007) Soil and human health: an epidemiological review. Eur J Soil Sci 58:1200–1212. doi:10.1111/j.1365-2389.2007.00922.x

    Google Scholar 

  • Iglesias C, Mayer J, Chavez L, Calle F (1997) Genetic potential and stability of carotene content in cassava roots. Euphytica 94:367–373

    CAS  Google Scholar 

  • Johns T, Eyzaguirre PB (2007) Biofortification, biodiversity and diet: a search for complementary applications against poverty and malnutrition. Food Policy 32:1–24

    Google Scholar 

  • Kabata-Pendias E (2011) Trace elements in soils and plants, 4th edn. Taylor and Francis Group, LLC, Boca Raton

    Google Scholar 

  • Kandlikar M, Risbey J (2000) Agricultural impacts of climate change: if adaptation is the answer, what is the question? Clim Change 45(3/4):529–539

    Google Scholar 

  • Kennedy C, Nantel G, Shetty P (2003) The scourge of hidden hunger: global dimensions of micronutrient deficiencies. FAO Food Nutr Agric 32:15–16

    Google Scholar 

  • Kimball B, Kobayashi K, Bindi M (2002) Responses of agricultural crops to free-air CO2 enrichment. Adv Agron 77:293–368

    Google Scholar 

  • Kirschenmann F (2006) Farming, food and health. Gleanings. Leopold Center for Sustainable Agriculture, Iowa State University, Summer 2006. http://www.glynwood.org/resource/foodandhealth.pdf. Accessed Sept 22 2007

  • Knez M, Graham RD (2013) The impact of micronutrient deficiencies in agricultural soils and crops on the nutritional health of humans. In: Selinus O et al (eds) Essentials of medical geology, revised edition. Springer, Dordrecht, pp 517–533. doi:10.1007/978-94-007-4375-5_22

  • Köhrle J, Jakob F, Contempré B, Dumont JE (2005) Selenium, the thyroid and the endocrine system. Endocr Rev 26:944–984

    Google Scholar 

  • Kommisrud E, Østerås O, Vatn T (2005) Blood selenium associated with health and fertility in Norwegian dairy herds. Acta Vet Scand 46:229–240

    CAS  Google Scholar 

  • Kumara BS, Priyadarsini KI (2014) Selenium nutrition: how important is it? Biomed Prev Nutr 4:333–341. doi:10.1016/j.bionut.2014.01.006

    Google Scholar 

  • Lake IR, Hooper L, Abdelhamid A, Bentham G, Boxall ABA, Draper A, Fairweather-Tait S, Hulme M, Hunter PR, Nichols G, Waldron KW (2012) Climate change and food security: health impacts in developed countries. Environ Health Perspect 120(11):1520–1526

    Google Scholar 

  • Lal R, Stewart BA (2012) Sustainable management of soil resources and food security. In: Lal R, Stewart BA (eds) World soil resources and food security. Advances in soil science series. Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  • Lal R, Uphoff N, Stewart BA, Hansen DO (2005) Climate change and global food security. Books in soils, plants, and the environment series, vol 96. Taylor & Francis Group, LLC, Boca Raton

    Google Scholar 

  • Lal R, Sivakumar MVK, Faiz SMA, Mustafizur Rahman AHM, Islam KR (2011) Climate change and food security in South Asia. Springer, Dodrecht

    Google Scholar 

  • Lauchli A (1993) Selenium in plants: uptake, functions, and environmental toxicity. Bot Acta 106:455–468

    CAS  Google Scholar 

  • Lee GP, Park KW (1999) Quality improvement of ‘Seoul’ celery by selenium in the nutrient solution culture. Acta Hortic 483:185–192

    CAS  Google Scholar 

  • Lemly AD, Finger SE, Nelson MK (1993) Sources and impacts of irrigation drain water contaminants in arid wetlands. Environ Toxicol Chem 12:2265–2279

    CAS  Google Scholar 

  • Levander OA (1986) Selenium. In: Mertz W (ed) Trace elements in human and animal nutrition, vol 2, 5th edn. Academic Press Inc, Orlando, pp 209–279

    Google Scholar 

  • Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite. New Phytol 178:92–102. doi:10.1111/j.1469-8137.2007.02343.x

    CAS  Google Scholar 

  • Lin ZQ (2011) Biogenic volatilization of selenium in soil and plant systems. In: Bañuelos GS, Lin Z-Q, Yin X, Duan N (eds) Selenium: global perspectives of impacts on humans, animals and the environment. University of Science and Technology of China Press, Hefei, pp 11–12. ISBN 978-7-312-02929-5

  • Lindblom SD, Valdez-Barillas JR, Fakra SC, Marcus MA, Wangeline AL, Pilon-Smits EAH (2012) Influence of microbial associations on selenium localization and speciation in roots of Astragalus and Stanleya hyperaccumulators. Environ Exp Bot. doi:10.1016/j.envexpbot.2011.12.011

    Google Scholar 

  • Ling W, Shen Q, Gao Y, Gu X, Yang Z (2007) Use of bentonite to control the release of copper from contaminated soils. Aust J Soil Res 45:618–623

    CAS  Google Scholar 

  • Lobell DB, Schlenker WS, Costa-Roberts J (2011) Climate trends and global crop production since 1980. Science 333:616–620. doi:10.1126/science.1204531

    CAS  Google Scholar 

  • Lobell DB, Sibley A, Ortiz-Monasterio JI (2012) Extreme heat effects on wheat senescence in India. Nat Clim Change 2:186–189

    Google Scholar 

  • Lyons GL, Stangoulis JCR, Graham RD (2004) Exploiting micronutrient interaction to optimize biofortification programs: the case for inclusion of selenium and iodine in the harvest plus program. Nutr Rev 62:247–252

    Google Scholar 

  • Lyons GH, Judson GJ, Ortiz-Monasterio I, Genc Y, Stangoulis JCR, Graham RD (2005) Selenium in Australia: selenium status and biofortification of wheat for better health. J Trace Elem Med Biol 19:75–82

    CAS  Google Scholar 

  • Mäkelä A, Wan Wang W-C, Hamalainen M, Nanto V, Laihonen P, Kotilainen H, Meng LX, Mäkelä P (1995) Environmental effects of nationwide selenium fertilization in Finland. Biol Trace Elem Res 47:289–298

    Google Scholar 

  • Malorgio F, Diaz KE, Ferrante A, Mensuali-Sodi A, Pezzarossa B (2009) Effects of selenium addition on minimally processed leafy vegetables grown in floating system. J Sci Food Agric 89:2243–2251

    CAS  Google Scholar 

  • McConnell D (1979) Biogeochemistry of phosphate minerals. In: Trudinger PA, Swaine DJ (eds) Biogeochemical cycling of mineral-forming elements (Studies in environmental science, vol 3. Elsevier Scientific, Amsterdam, pp 163–204

    Google Scholar 

  • McNeal JM, Balistrieri LS (1989) Geochemistry and occurrence of selenium: an overview. In: Jacobs LW (ed) Selenium in agriculture and the environment. American Society of Agronomy, Inc., Madison

    Google Scholar 

  • Mikkelsen RL, Page AL, Bingham FT (1989) Factors affecting selenium accumulation by agricultural crops. In: Selenium in agriculture and the environment, Soil Sci Soc Am J Spec Publ 23, pp 65–94

  • Molden D (2007) Water for food, water for Life. IWMI Earthscan, London

    Google Scholar 

  • Mosher BW, Duce RA (1987) A global atmospheric selenium budget. J Geophys Res 92:13289–13298

    CAS  Google Scholar 

  • Neal RH (1995) Selenium. In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic & Professional, London, pp 260–283

    Google Scholar 

  • Nelson GC, Rosegrant MW, Koo J, Robertson R, Sulser T, Zhu T, Ringler C, Msangi S, Palazzo A, Batka M, Magalhaes M, Valmonte-Santos R, Ewing M, Lee D (2009) Climate change: Impact on agriculture and costs of adaptation. International Food Policy Research Institute, Washington

    Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    CAS  Google Scholar 

  • Nriagu JO (1989) Global cycling of selenium. In: Ihnat M (ed) Occurrence and Distribution of Selenium. CRC Press, Boca, Florida, pp 327–340

  • Oliver MA (1997) Soil and human health: a review. Eur J Soil Sci 48:573–592

    CAS  Google Scholar 

  • Ortiz-Monasterio JI, Palacios-Rojas N, Meng E, Pixley K, Trethowan R, Pena RJ (2007) Enhancing the mineral and vitamin content of wheat and maize through plant breeding. J Cereal Sci 46:293–307

    CAS  Google Scholar 

  • Parry ML, Arnell NW, McMichael T, Nicholls RJ, Martens P, Kovats RS, Livermore MTJ, Rosenzweig C, Iglesias A, Fischer G (2001) Millions at risk: defining critical climate threats and targets. Glob Environ Change 11(3):181–183. doi:10.1016/S0959-3780(01)00011-5

    Google Scholar 

  • Parry M, Rosenzweig C, Livermore M (2005) Climate change, global food supply and risk of hunger. Philos Trans R Soc B 360:2125–2138

    Google Scholar 

  • Pepper I, Rice C (2010) The influence of soil on public health. In: 19th world congress of soil science, soil solutions for a changing world, 1–6 Aug 2010, Brisbane, Australia, pp 30–32

  • Petry N (2011) Biofortification: optimizing iron absorption from beans and other staple foods. ETH publish, Zürich, Ph. D. Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 19787. doi:10.3929/ethz-a-006682299

  • Pfeiffer WH, McClafferty B (2007) Biofortification: breeding micronutrient-dense crops. In: Kang MS, Priyadarshan PM (eds) Breeding major food staples for the 21st century. Blackwell, Oxford, pp 61–91

    Google Scholar 

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    CAS  Google Scholar 

  • Poggi V, Arcioni A, Filippini P, Pifferi PG (2000) Foliar application of selenite and selenate to potato (Solanum tuberosum): effect of a ligand agent on selenium content of tubers. J Agric Food Chem 48:4749–4751

    CAS  Google Scholar 

  • Preedy VR, Srirajaskanthan R, Patel VB (2013a) The handbook of food fortification: from concepts to public health applications. Nutrition and health series, vol 1. Springer, New York

    Google Scholar 

  • Preedy VR, Srirajaskanthan R, Patel VB (2013b) The handbook of food fortification: from concepts to public health applications. Nutrition and health series, vol 2. Springer, New York

    Google Scholar 

  • Qaim M, Stein AJ, Meenakshi JV (2007) Economics of biofortification. Agric Econ 37:119–133

    Google Scholar 

  • Quinn CF, Freeman JL, Reynolds RJB, Cappa JJ, Fakra SC, Marcus MA, Lindblom SD, Quinn EK, Bennett LE, Pilon-Smits EAH (2010) Selenium hyperaccumulation offers protection from cell disruptor herbivores. Plant Physiol 153:1630–1652

    Google Scholar 

  • Rayman MP (2000) The importance of selenium to human health. Lancet 356(9225):233–234

    CAS  Google Scholar 

  • Rayman MP (2002) The argument for increasing selenium intake. Proc Nutr Soc 61:203–215

    CAS  Google Scholar 

  • Rayman MP (2005) Selenium in cancer prevention: a review of the evidence and mechanism of action. Proc Nutr Soc 64:527–542

    CAS  Google Scholar 

  • Reilly C (1998) Selenium: a new entrant into the functional food arena. Trends Food Sci Technol 9(3):114–118

    CAS  Google Scholar 

  • Reilly C (2006) Selenium in food and health, 2nd edn. Springer, New York

    Google Scholar 

  • Reynolds MP (2010) Climate change and crop production. CAB International, UK

    Google Scholar 

  • Ringler C, Zhu T, Cai X, Koo J, Wang D (2011) Climate change impacts on food security in Sub-Saharan Africa—insights from comprehensive climate change modeling. International Food Policy Research Institute, Washington

    Google Scholar 

  • Rosegrant MW, Cline SA (2003) Global food security: challenges and policies. Science 302:1917–1919. doi:10.1126/science.1092958

    CAS  Google Scholar 

  • Rosenzweig C, Hillel D (2005) Climate change, agriculture, and sustainability. In: Lal R, Uphoff N, Stewart BA, Hansen DO (eds) Climate change and global food security. Books in soils, plants, and the environment series, vol 96. Taylor & Francis Group, LLC, Boca Raton, pp 243–268

    Google Scholar 

  • Rosenzweig C, Parry ML (1994) Potential impact of climate change on world food supply. Nature 367(6459):133–138

    Google Scholar 

  • Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    CAS  Google Scholar 

  • Rude RK, Gruber HE (2004) Magnesium deficiency and osteoporosis: animal and human observations. J Nutr Biochem 15:710–716

    CAS  Google Scholar 

  • Sager M (2006) Selenium in agriculture, food and nutrition. Pure Appl Chem 78:111–133

    CAS  Google Scholar 

  • Salonen J, Alfthan G, Huttunen J, Pihharainen J, Puska P (1982) Association between cardiovascular death and myocardial infarction and serum selenium in a matched-paired longitudinal study. Lancet 2:175–179

    CAS  Google Scholar 

  • Saltzman A, Birol E, Bouis HE, Boy E, De Moura FF, Islam Y, Pfeiffer WH (2013) Biofortification: progress toward a more nourishing future. Glob Food Secur 2:9–17. doi:10.1016/j.gfs.2012.12.003

    Google Scholar 

  • Schmidhuber J, Tubiello FN (2007) Global food security under climate change. PNAS 104(50):19703–19708. doi:10.1073/pnas.0701976104

    CAS  Google Scholar 

  • Seppänen MM, Kontturi J, Heras IL, Madrid Y, Cámara C, Hartikainen H (2010) Agronomic biofortification of Brassica with selenium—enrichment of SeMet and its identification in Brassica seeds and meal. Plant Soil 337:273–283. doi:10.1007/s11104-010-0523-y

    Google Scholar 

  • Shah M, Kannamkumarath SS, Wuilloud JCA, Wuillouda RG, Caruso JA (2004) Identification and characterization of selenium species in enriched green onion (Allium fistulosum) by HPLC-ICP-MS and ESI-ITMS. R Soc Chem At Spectrom 1(9):381–386

    Google Scholar 

  • Sirichakwal PP, Puwastien P, Polngam J, Kongkachuichai R (2005) Selenium content of Thai foods. J Food Compos Anal 18:47–59

    CAS  Google Scholar 

  • Sivakumar MVK, Lal R, Selvaraju R, Hamdan I (2013) Climate change and food security in West Asia and North Africa. Springer, Dordrecht

    Google Scholar 

  • Smith KM, Abrahams PW, Dagleish MP, Steigmajer J (2009) The intake of lead and associated metals by sheep grazing mining-contaminated floodplain pastures in mid-Wales, UK: I. Soil ingestion, soil–metal partitioning and potential availability to pasture herbage and livestock. Sci Total Environ 407:3731–3739

    CAS  Google Scholar 

  • Sors TG, Ellis DR, Salt DE (2005) Selenium uptake, translocation, assimilation and metabolic fate in plants. Photosynth Res 86:373–389

    CAS  Google Scholar 

  • Spash CL (2008) Climate change: need for new economic thought. Econ Polit Wkly 42(6):483–490

  • Stewart MS, Davis RL, Walsh LP, Pence BC (1997) Induction of differentiation and apoptosis by sodium selenite in human colonic carcinoma cells (HT29). Cancer Lett 117(1):35–40

    CAS  Google Scholar 

  • Tahtat D, Benamar MA, Aklil K, Mouzai M, Azebouche A (2003) Selenium intake in food ration in the region of Algiers. J Trace Microprobe Tech 21(181–188):N11

    Google Scholar 

  • Tapeiro H, Townsend DM, Tew KD (2003) The antioxidant role of selenium and seleno-compounds. Biomed Pharmacother 57:134–144

  • Terry N, Zayed AM, de Souza MP, Tarun AS (2000) Selenium in higher plants. Annu Rev Plant Physiol 51:401–432

    CAS  Google Scholar 

  • Thacher TD, Fischer PR, Strand MA, Pettifor JM (2006) Nutritional rickets around the world: causes and future directions. Ann Trop Paediatr 26:1–16

    Google Scholar 

  • Thavarajah D, Vandenberg A (2011) Genetic improvement of bioavailable selenium content in lentil seeds. Final report, Agriculture Development Fund (project # 20070186), Saskatchewan Pulse Growers Association (project # BRE0802), 28 Feb 2011

  • Thavarajah D, Thavarajah P, Combs GF (2013) Lentils (Lens culinaris L.) as a source of dietary selenium. In: Preedy VR et al (eds) Handbook of food fortification and health: from concepts to public health applications, nutrition and health, vol 1. Springer, New York, pp 255–264. doi:10.1007/978-1-4614-7076-2_20

  • Tirado MC, Clarke R, Jaykus LA, McQuatters-Gollop A, Frank JM (2010) Climate change and food safety: a review. Food Res Int 43:1745–1765. doi:10.1016/j.foodres.2010.07.003

    Google Scholar 

  • Turner RJ, Finch JM (1991) Selenium and the immune response. Proc Nutr Soc 50:275–285

    CAS  Google Scholar 

  • Usepa US Environmental, Agency Protection (2000) Biosolids technology fact sheet: land application of biosolids (EPA 832-F-00-064). USEPA, Washington

    Google Scholar 

  • Van Dael P, Davidsson L, Munoz-Box R et al (2001) Selenium absorption and retention from a selenite- or selenate-fortified milk-based formula in men measured by a stable isotope technique. Br J Nutr 85(2):157–163

    Google Scholar 

  • Van Jaarsveld PJ, Faber M, Tanumihardjo SA, Nestel P, Lombard CJ, Benade AJS (2005) beta-Carotene-rich orange-fleshed sweet potato improves the vitamin A status of primary school children assessed with the modified-relative-dose–response test. Am J Clin Nutr 81:1080–1087

    Google Scholar 

  • Varo P, Alfthan G, Huttunen JK, Aro A (1994) Nationwide selenium supplementation in Finland—effects on diet, blood and tissue levels, and health. In: Burk R (ed) Selenium in biology and human health. Springer, New York, pp 197–218

    Google Scholar 

  • Wang Z, Gao Y (2001) Biogeochemical cycling of selenium in Chinese environments. Appl Geochem 16:1345–1351

    CAS  Google Scholar 

  • Wang WC, Naentoe V, Maekelae AL, Maekelae P (1995) Effect of nationwide selenium supplementation in Finland on selenium status in children with juvenile rheumatoid arthritis. A ten-year follow-up study. Analyst 120:955–958

    CAS  Google Scholar 

  • Wangeline AL, Valdez JR, Lindblom SD, Bowling KL, Reeves FB, Pilon-Smits EAH (2011) Selenium tolerance in rhizosphere fungi from Se hyperaccumulator and non-hyperaccumulator plants. Am J Bot 98:1139–1147

    Google Scholar 

  • Watson RT (2010) Foreword. In: Reynolds MP (ed) Climate change and crop production. CAB International, UK

    Google Scholar 

  • Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant Soil 245:205–214

    CAS  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    CAS  Google Scholar 

  • Welch RM, Graham RD (2005) Agriculture: the real nexus for enhancing bioavailable micronutrients in food crops. J Trace Elem Med Biol 18:299–307

    CAS  Google Scholar 

  • WFP (2012) Climate impacts on food security and nutrition: a review of existing knowledge. United Nations World Food Program. Met Office and WFP’s Office for Climate Change, Environment and Disaster Risk Reduction, UK

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10(12):586–593

    Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets—iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84. doi:10.1111/j.1469-8137.2008.02738.x

    CAS  Google Scholar 

  • White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080. doi:10.1093/aob/mcq085

    CAS  Google Scholar 

  • White PJ, Bowen HC, Parmaguru P, Fritz M, Spracklen WP, Spiby RE, Meachan MC, Mead A, Harriman M, Trueman LJ, Smith BM, Thomas B, Broadley MR (2004) Interactions between selenium and sulphur nutrition in Arabidopsis thaliana. J Exp Bot 55:1927–1937

    CAS  Google Scholar 

  • White PJ, Bowen HC, Marshall B, Broadley MR (2007) Extraordinarily high leaf selenium to sulfur ratios define ‘Se-accumulator’ plants. Ann Bot 100:111–118. doi:10.1093/aob/mcm084

    CAS  Google Scholar 

  • White PJ, Broadley MR, Gregory PJ (2012) Managing the nutrition of plants and people. Appl Environ Soil Sci 1–13. doi:10.1155/2012/104826

  • WHO (2012) The world health report 2012. World Health Organization, Geneva

    Google Scholar 

  • WHO, FAO (2003) Joint WHO/FAO expert consultation on diet, nutrition and the prevention of chronic diseases. World Health Organization, Geneva

    Google Scholar 

  • Wróbel K, Wróbel KZ, Kannamkumarath SS, Caruso JA, Wysocka IA, Bulska E, Swiatek J, Wierzbicka M (2004) HPLC–ICP–MS speciation of selenium in enriched onion leaves—a potential dietary source of Se-methylselenocysteine. Food Chem 86:617–623

    Google Scholar 

  • Wu L (2004) Review of 15 years of research on ecotoxicology and remediation of land contaminated by agricultural drainage sediment rich in selenium. Ecotoxicol Environ Saf 57:257–269. doi:10.1016/S0147-6513(03)00064-2

    CAS  Google Scholar 

  • Yang GQ, Wang SZ, Zhou RH, Sun SZ (1983) Endemic selenium intoxication of humans in China. Am J Clin Nutr 37(5):872–881

    CAS  Google Scholar 

  • Yao Y, Pei F, Kang P (2011) Selenium, iodine, and the relation with Kashin-Beck disease. Nutrition 27:1095–1100

    CAS  Google Scholar 

  • Ylaranta T (1983) Effect of applied selenite and selenate on the selenium content of barley (Hordeum vlugare). Ann Agric Fenn 22:164–174

    CAS  Google Scholar 

  • Yu SY, Zhu YJ, Li WG, Huang QS, Huang CZ, Zhang QN, Hou C (1991) A preliminary report on the intervention trials of primary liver cancer in high-risk populations with nutritional supplementation of selenium in China. Biol Trace Elem Res 29(3):289–294

    CAS  Google Scholar 

  • Zayed A, Lytle CM, Terry N (1998) Accumulation and volatilization of different chemical species of selenium by plants. Planta 206:284–292

    CAS  Google Scholar 

  • Zhang Y, Gladyshev VN (2009) Comparative genomics of trace elements: emerging dynamic view of trace element utilization and function. Chem Rev 109:4828–4861

    CAS  Google Scholar 

  • Zhao C, Ren J, Xue C, Lin E (2005) Study on the relationship between soil selenium and plant selenium uptake. Plant Soil 277:197–206

    CAS  Google Scholar 

  • Ziska LH, Bunce JA, Shimono H, Gealy DR, Baker JT, Newton PCD, Reynolds MP, Jagadish SVK, Zhu C, Howden M, Wilson LT (2012) Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc R Soc B 279:4097–4105. doi:10.1098/rspb.2012.10051471-2954

    Google Scholar 

Download references

Acknowledgments

El-Ramady and Abd Alla acknowledge the Hungarian Ministry of Education and Culture (Hungarian Scholarship Board, HSB and the Balassi Institute) for funding and supporting this work. He also thanks Prof. Eric Lichtfouse for his support and revising this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ramady, H., Abdalla, N., Alshaal, T. et al. Selenium in soils under climate change, implication for human health. Environ Chem Lett 13, 1–19 (2015). https://doi.org/10.1007/s10311-014-0480-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-014-0480-4

Keywords

Navigation