Skip to main content
Log in

Immobilization of nitrilase on bioinspired silica for efficient synthesis of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile

  • Biocatalysis
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

In this paper, a simple and effective method using sodium metasilicate as precursor and amine as additive was first reported to immobilize recombinant nitrilase, for efficient production of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile. High immobilization recovery of enzyme activity (above 90 %) was achieved. The immobilized enzyme displayed better thermal stability, pH stability and shelf life compared to free nitrilase. Moreover, it showed excellent reusability and could be recycled up to 16 batches without significant loss in activity. 200 mM 2-hydroxy-4-(methylthio) butanenitrile was completely converted by the immobilized enzyme within 30 min, and the accumulation amount of 2-hydroxy-4-(methylthio) butanoic acid reached 130 mmol/g of immobilized beads after 16 batches. These encouraging results demonstrated the efficiency of the new technology for nitrilase immobilization, which has great potential in preparation of 2-hydroxy-4-(methylthio) butanoic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Banerjee A, Sharma R, Banerjee U (2002) The nitrile-degrading enzymes: current status and future prospects. Appl Microbiol Biotechnol 60(1–2):33–44

    CAS  PubMed  Google Scholar 

  2. Betancor L, Luckarift HR (2008) Bioinspired enzyme encapsulation for biocatalysis. Trends Biotechnol 26(10):566–572

    Article  CAS  PubMed  Google Scholar 

  3. Black GW, Brown NL, Perry JJB, Randall PD, Turnbull G, Zhang M (2015) A high-throughput screening method for determining the substrate scope of nitrilases. Chem Commun 51(13):2660–2662

    Article  CAS  Google Scholar 

  4. Cheng YM, Ma L, Deng C, Xu ZH, Chen JH (2014) Effect of PEG-mediated pore forming on Ca-alginate immobilization of nitrilase-producing bacteria Pseudomonas putida XY4. Bioprocess Biosyst Eng 37(8):1653–1658

    Article  CAS  PubMed  Google Scholar 

  5. Forsyth C, Patwardhan SV (2013) Controlling performance of lipase immobilised on bioinspired silica. J Mater Chem B 1(8):1164–1174

    Article  CAS  Google Scholar 

  6. Gill I (2001) Bio-doped nanocomposite polymers: sol-gel bioencapsulates. Chem Mater 13(10):3404–3421

    Article  CAS  Google Scholar 

  7. Gong JS, Lu ZM, Li H, Shi JS, Zhou ZM, Xu ZH (2012) Nitrilases in nitrile biocatalysis: recent progress and forthcoming research. Microb Cell Fact 11(1):142–159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin LQ, Li ZT, Liu ZQ, Zheng YG, Shen YC (2014) Efficient production of methionine from 2-amino-4-methylthiobutanenitrile by recombinant Escherichia coli harboring nitrilase. J Ind Microbiol Biotechnol 41(10):1479–1486

    Article  CAS  PubMed  Google Scholar 

  9. Kabaivanova L, Dobreva E, Dimitrov P, Emanuilova E (2005) Immobilization of cells with nitrilase activity from a thermophilic bacterial strain. J Ind Microbiol Biotechnol 32(1):7–11

    Article  CAS  PubMed  Google Scholar 

  10. Kanmakicho KM (1995) Process for producing 2-hydroxy-4-methylthiobutanoic acid. US Patent 5386056

  11. Kobayashi Y, Watabe K, Ohira M, Hayakawa K (2000) Process for preparing a-hydroxyacids using microorganism and novel microoganism. US patent 6037155

  12. Kumar S, Mohan U, Kamble AL, Pawar S, Banerjee UC (2010) Cross-linked enzyme aggregates of recombinant Pseudomonas putida nitrilase for enantioselective nitrile hydrolysis. Bioresour Technol 101(17):6856–6858

    Article  CAS  PubMed  Google Scholar 

  13. Li H, Yang T, Gong JS, Xiong L, Lu ZM, Li H, Shi JS, Xu ZH (2015) Improving the catalytic potential and substrate tolerance of Gibberella intermedia nitrilase by whole-cell immobilization. Bioprocess Biosyst Eng 38(1):189–197

    Article  CAS  PubMed  Google Scholar 

  14. Liu ZQ, Zhou M, Zhang XH, Xu JM, Xue YP, Zheng YG (2012) Biosynthesis of iminodiacetic acid from iminodiacetonitrile by immobilized recombinant Escherichia coli harboring nitrilase. J Mol Microbiol Biotechnol 22(1):35–47

    Article  PubMed  Google Scholar 

  15. Martín-Venegas R, Brufau MT, Guerrero-Zamora AM, Mercier Y, Geraert PA, Ferrer R (2013) The methionine precursor dl-2-hydroxy-(4-methylthio) butanoic acid protects intestinal epithelial barrier function. Food Chem 141(3):1702–1709

    Article  PubMed  Google Scholar 

  16. Mylerová V, Martínková L (2003) Synthetic applications of nitrile-converting enzymes. Curr Org Chem 7(13):1279–1295

    Article  Google Scholar 

  17. Ozyilmaz G, Tukel SS, Alptekin O (2005) Activity and storage stability of immobilized glucose oxidase onto magnesium silicate. J Mol Catal B-Enzym 35(4–6):154–160

    Article  CAS  Google Scholar 

  18. Reetz MT, Tielmann P, Wiesenhöfer W, Könen W, Zonta A (2003) Second generation sol–gel encapsulated lipases: robust heterogeneous biocatalysts. Adv Synth Catal 345(6–7):717–728

    Article  CAS  Google Scholar 

  19. Rey P, Rossi JC, Taillades J, Gros G, Nore O (2004) Hydrolysis of nitriles using an immobilized nitrilase: applications to the synthesis of methionine hydroxy analogue derivatives. J Agric Food Chem 52(26):8155–8162

    Article  CAS  PubMed  Google Scholar 

  20. Ronda L, Bruno S, Campanini B, Mozzarelli A, Abbruzzetti S, Viappiani C, Cupane A, Levantino M, Bettati S (2015) Immobilization of proteins in silica gel: biochemical and biophysical properties. Curr Org Chem 19(17):1653–1668

    Article  CAS  Google Scholar 

  21. Shiozaki T, Ikudome K (2003) Method for producing 2-hydroxy-4-methylthiobutanoic acid. US Patent 6649794

  22. Sohoni SV, Nelapati D, Sathe S, Javadekar-Subhedar V, Gaikaiwari RP, Wangikar PP (2015) Optimization of high cell density fermentation process for recombinant nitrilase production in E. coli. Bioresour Technol 188:202–208

    Article  CAS  PubMed  Google Scholar 

  23. Swartz JD, Miller SA, Wright D (2009) Rapid production of nitrilase containing silica nanoparticles offers an effective and reusable biocatalyst for synthetic nitrile hydrolysis. Org Process Res Dev 13(3):584–589

    Article  CAS  Google Scholar 

  24. Tang X, Yang YL, Shi YH, Le GW (2011) Comparative in vivo antioxidant capacity of DL-2-hydroxy-4-methylthiobutanoic acid (HMTBA) and DL-methionine in male mice fed a high-fat diet. J Sci Food Agric 91(12):2166–2172

    CAS  PubMed  Google Scholar 

  25. Vidinha P, Augusto V, Almeida M, Fonseca I, Fidalgo A, Ilharco L, Cabral JM, Barreiros S (2006) Sol-gel encapsulation: an efficient and versatile immobilization technique for cutinase in non-aqueous media. J Biotechnol 121(1):23–33

    Article  CAS  PubMed  Google Scholar 

  26. Xue YP, Shi CC, Xu Z, Jiao B, Liu ZQ, Huang JF, Zheng YG, Shen YC (2015) Design of nitrilases with superior activity and enantioselectivity towards sterically hindered nitrile by protein engineering. Adv Synth Catal 357(8):1741–1750

    Article  CAS  Google Scholar 

  27. Yao PY, Li JJ, Yuan J, Han C, Liu XT, Feng JH, Wu QQ, Zhu DM (2015) Enzymaic synthesis of a key intermediate for rosuvastatin by nitrilase-catalyzed hydrolysis of ethyl (R)-4-cyano-3-hydroxybutyrate at high substrate concentration. ChemCatChem 7(2):271–275

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (No. 21476210), Natural Science Foundation of Zhejiang Province (No. LY13B060004) and the Zhejiang Major International Science and Technology Cooperation Project (No. 2013C24013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 86 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, LQ., Guo, DJ., Li, ZT. et al. Immobilization of nitrilase on bioinspired silica for efficient synthesis of 2-hydroxy-4-(methylthio) butanoic acid from 2-hydroxy-4-(methylthio) butanenitrile. J Ind Microbiol Biotechnol 43, 585–593 (2016). https://doi.org/10.1007/s10295-016-1747-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-016-1747-5

Keywords

Navigation