Skip to main content
Log in

New characteristics of weighted GDOP in multi-GNSS positioning

  • Original Article
  • Published:
GPS Solutions Aims and scope Submit manuscript

Abstract

In positioning, navigation and timing applications of multi-GNSS (global navigation satellite system) constellations, the geometric dilution of precision (GDOP) offers an important index for selecting satellites and evaluating positioning accuracy. However, GDOP assumes that the measurement errors of all the tracked satellites are independent and have the same accuracy level, which is impossible in practice, especially when the tracked satellites are from various constellations. Through introducing a weighted matrix describing the measurement errors of different satellites into a common GDOP, we focus on new characteristics of weighted GDOP (WGDOP) in two aspects. First, we compare the sizes of WGDOP and the common GDOP based on the range of the weights of different satellites, i.e., the diagonal elements of the weighted matrix. In addition, when the weights of different satellites increase, the change of WGDOP with the weights is also derived. Moreover, a closed-form formula for calculating WGDOP is also presented. The theoretical derivations demonstrate that the closed-form can reduce the computation burden effectively. Furthermore, numerical tests verify these analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Shaery A, Zhang S, Rizos C (2013) An enhanced calibration method of GLONASS inter-channel bias for GNSS RTK. GPS Solut 17(2):165–173

    Article  Google Scholar 

  • Blanco-Delgado N, Nunes F (2010) Satellite selection method for multi-constellation GNSS using convex geometry. IEEE Trans Veh Technol 59(9):4289–4297

    Article  Google Scholar 

  • Chen CS (2015) Weighted geometric dilution of precision calculations with matrix multiplication. Sensors 15(1):803–817

    Article  Google Scholar 

  • Chen CS, Chiu YJ, Lee CT, Lin JM (2013) Calculation of weighted geometric dilution of precision. J Appl Math. https://doi.org/10.1155/2013/953048

    Google Scholar 

  • Horn RA, Johnson CR (2010) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • Leick A, Rapoport L, Tatarnikov D (2015) GPS satellite surveying, 4th edn. Wiley, New York

    Google Scholar 

  • Meng FC, Wang S, Zhu BC (2015) GNSS reliability and positioning accuracy enhancement based on fast satellite selection algorithm and RAIM in multiconstellation. IEEE Aerosp Electron Syst Mag 30(10):14–27

    Article  Google Scholar 

  • Odolinski R, Teunissen PJG, Odijk D (2015) Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solut 19(1):151–163

    Article  Google Scholar 

  • Pan L, Cai C, Santerre R, Zhang X (2017) Performance evaluation of single-frequency point positioning with GPS, GLONASS, Beidou and Galileo. Surv Rev 49(354):197–205

    Article  Google Scholar 

  • Teng YL, Wang J (2014) New characteristics of geometric dilution of precision (GDOP) for multi-GNSS constellations. J Navig 67(6):1018–1028

    Article  Google Scholar 

  • Teng YL, Wang J (2016a) Some remarks on PDOP and TDOP for multi-GNSS constellations. J Navig 69(1):145–155

    Article  Google Scholar 

  • Teng YL, Wang J (2016b) A closed-form formula to calculate geometric dilution of precision (GDOP) for multi-GNSS constellations. GPS Solut 20(3):331–339

    Article  Google Scholar 

  • Teunissen PJG, Odolinski P, Odijk D (2014) Instantaneous Beidou + GPS RTK positioning with high cut-off elevation angles. J Geodesy 88(4):335–350

    Article  Google Scholar 

  • Wang J, Knight N, Lu N X (2011) Impact of the GNSS time offsets on positioning reliability. J GPS 10(2):165–172

    Article  Google Scholar 

  • Won DH, Ahn J, Lee SW, Lee J, Sung S, Park HW, Park JP, Lee YJ (2012) Weighted DOP with consideration on elevation-dependent range errors of GNSS satellites. IEEE Trans Instrum Meas 61(12):3241–3250

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant nos. 61603075 and 51277022, and the Scientific Research Fund of Science & Technology Department of Sichuan Province under Grant no. 2018JY0239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunlong Teng.

Appendix

Appendix

The proof of (9) will be clarified in this section. Let \({\varvec{A}},\;{\varvec{B}} \in {R^{K \times K}}\) be the two symmetric positive matrices and let the eigenvalues \({\lambda _i}\left( {\varvec{A}} \right),\;{\lambda _i}\left( {\varvec{B}} \right)\), \({\lambda _i}\left( {{\varvec{A}}+{\varvec{B}}} \right)\) be arranged in increasing order. For any nonzero vector \({\varvec{v}} \in {R^K}\), we have the bound

$${\lambda _1}\left( {\varvec{B}} \right) \leq \frac{{{{\varvec{x}}^T}{\varvec{B}}{\varvec{x}}}}{{{{\varvec{x}}^T}{\varvec{x}}}} \leq {\lambda _K}\left( {\varvec{B}} \right)$$
(41)

and hence for any \(1 \leq i \leq \;K\) we have

$$\begin{gathered} {\lambda _i}\left( {{\varvec{A}}+{\varvec{B}}} \right)=\mathop {\hbox{min} }\limits_{{{{\varvec{w}}_1},\; \cdots ,{{\varvec{w}}_{K - i}} \in {R^K}\;}} \mathop {\hbox{max} }\limits_{{\begin{array}{*{20}{c}} {{\varvec{x}} \ne 0} \\ {{\varvec{x}} \bot {{\varvec{w}}_1},\; \cdots ,{{\varvec{w}}_{K - i}}} \end{array}\;}} \frac{{{{\varvec{x}}^T}\left( {{\varvec{A}}+{\varvec{B}}} \right){\varvec{x}}}}{{{{\varvec{x}}^T}{\varvec{x}}}} \\ =\mathop {\hbox{min} }\limits_{{{{\varvec{w}}_1},\; \cdots ,{{\varvec{w}}_{K - i}} \in {R^K}\;}} \mathop {\hbox{max} }\limits_{{\begin{array}{*{20}{c}} {{\varvec{x}} \ne 0} \\ {{\varvec{x}} \bot {{\varvec{w}}_1},\; \cdots ,{{\varvec{w}}_{K - i}}} \end{array}\;}} \left[ {\frac{{{{\varvec{x}}^T}{\varvec{A}}{\varvec{x}}}}{{{{\varvec{x}}^T}{\varvec{x}}}}+\frac{{{{\varvec{x}}^T}{\varvec{B}}{\varvec{x}}}}{{{{\varvec{x}}^T}{\varvec{x}}}}} \right] \\ \end{gathered}$$
(42)

which can be further transformed as

$${\lambda _i}\left( {{\varvec{A}}+{\varvec{B}}} \right) \geq \mathop {\hbox{min} }\limits_{{{{\varvec{w}}_1},\; \cdots ,{{\varvec{w}}_{K - i}} \in {R^K}\;}} \mathop {\hbox{max} }\limits_{{\begin{array}{*{20}{c}} {{\varvec{x}} \ne 0} \\ {{\varvec{x}} \bot {{\varvec{w}}_1},\; \cdots ,{{\varvec{w}}_{K - i}}} \end{array}\;}} \left[ {\frac{{{{\varvec{x}}^T}{\varvec{A}}{\varvec{x}}}}{{{{\varvec{x}}^T}{\varvec{x}}}}+{\lambda _1}\left( {\varvec{B}} \right)} \right]={\lambda _i}\left( {\varvec{A}} \right)+{\lambda _1}\left( {\varvec{B}} \right)$$
(43)

Considering the fact that the matrix \({\varvec{B}}\) is a symmetric positive one, namely, its eigenvalues are all positive, then we can obtain

$${\lambda _i}\left( {{\varvec{A}}+{\varvec{B}}} \right) \geq {\lambda _i}\left( {\varvec{A}} \right)$$
(44)

Assuming that \({\varvec{A}}={\varvec{H}}_{N}^{T}{\vec {{\varvec{W}}}_N}{{\varvec{H}}_N}\)and \({\varvec{B}}={\varvec{H}}_{N}^{T}\left( {{{\varvec{I}}_N} - {{\vec {{\varvec{W}}}}_N}} \right){{\varvec{H}}_N}\) in (44), then we can obtain the desired statement in (9).

$${\lambda _i}\left( {{\varvec{H}}_{N}^{T}{{\varvec{H}}_N}} \right) \geq {\lambda _i}\left( {{\varvec{H}}_{N}^{T}{{\vec {{\varvec{W}}}}_N}{{\varvec{H}}_N}} \right)$$
(45)

End of proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, Y., Wang, J., Huang, Q. et al. New characteristics of weighted GDOP in multi-GNSS positioning. GPS Solut 22, 74 (2018). https://doi.org/10.1007/s10291-018-0740-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10291-018-0740-z

Keywords

Navigation