Skip to main content

Advertisement

Log in

Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration?

  • Review Article
  • Published:
Odontology Aims and scope Submit manuscript

Abstract

Understanding outcomes of the interaction between a dental material and tooth tissue is important in terms not only of biocompatibilty but also of the potential for the material to modulate the response of the tissue. This interaction is influenced by many factors, including the chemistry of the material and any of its eluted components or degradation products, and the manner in which the tissue responds to these agents. Past studies of this interaction have primarily been aimed at identifying cytotoxic effects. More recently, investigations have focused on specific cellular responses, and in particular, on understanding how the materials themselves actually may contribute to regenerative processes in the tooth. Recent work has demonstrated the solubilization of proteins from dentin exposed to certain materials, such as calcium hydroxide, mineral trioxide aggregate, and acidic solutions that relate to those used in dentin bonding agents, with the subsequent modulation by these proteins of gene expression in odontoblast-like cells. This work suggests that dentin bridge formation under such materials may be stimulated through this process. Thus, there is much merit in examining both how new dental materials can be developed and how more traditional ones can be modified to preferentially stimulate regenerative processes when preferred. This review summarizes current knowledge about the potential beneficial effects derived from the interaction of dental materials with the dentin-pulp complex, as well as potential future developments in this exciting field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wataha JC. Principles of biocompatibility for dental practitioners. J Prosthet Dent 2001;86:203–209.

    PubMed  Google Scholar 

  2. Murray PE, Garcia Godoy C, Garcia Godoy F. How is the biocompatibility of dental biomaterials evaluated? Med Oral Patol Oral Cir Buccal 2007;12:E258–E266.

    Google Scholar 

  3. Geurtsen W. Biocompatibility of resin-modified filling materials, Crit Rev Oral Biol Med 2000;11:333–355.

    PubMed  Google Scholar 

  4. Demarco FF, Tarquinio SB, Jaeger MM, de Araujo VC, Matson E. Pulp response and cytotoxicity evaluation of 2 dentin bonding agents. Quint Int 2001;32:211–220.

    Google Scholar 

  5. Murray PE, Windsor LJ, Hafex AA, Stevenson RG, Cox CF. Comparison of pulp responses to resin composites. Oper Dent 2003;28:242–250.

    PubMed  Google Scholar 

  6. Koliniotou-Koumpia E, Tziafas D. Pulpal responses following direct pulp capping of healthy dog teeth with dentine adhesive systems. J Dent 2005;33:639–647.

    PubMed  Google Scholar 

  7. Yasuda Y, Inuyam Y, Maeda H, Akamine A, Nor JE, Saito T. Cytotoxicity of one-step dentin-bonding agents toward dental pulp and odontoblast-like cells. J Oral Rehabil J Oral Rehabil 2008;35:940–946.

    Google Scholar 

  8. Hanks CT, Wataha JC, Sun Z. In vito models of biocomatibility: a review. Dent Mater 1996;12:186–193.

    PubMed  Google Scholar 

  9. Bouillaguet S, Wataha JC. Future directions in bonding resins to the dentin-pulp complex. J Oral Rehabil 2004;31:385–392.

    PubMed  Google Scholar 

  10. Goldberg M, Smith AJ. Cells and extracellular matrices of dentin and pulp: a biological basis for repair and tissue engineering. Crit Rev Oral Biol Med 2004;15:13–27.

    PubMed  Google Scholar 

  11. Smith AJ, Lumley PJ, Tomson PL, Cooper PR. Dental regeneration and materials: a partnership. Clin Oral Invest 2008;12:103–108.

    Google Scholar 

  12. Graham L, Cooper PR, Cassidy N, Nor JE, Sloan AJ, Smith AJ. The effect of calcium hydroxide on solubilisation of bi-active dentin matrix components. Biomaterials 2006;27:2865–2873.

    PubMed  Google Scholar 

  13. Tay FR, Pashley DH. Dental adhesives of the future. J Adhes Dent 2002;4:91–103.

    PubMed  Google Scholar 

  14. Zhao S, Sloan AJ, Murray PE, Lumley PJ, Smith AJ. Ultrastructural localization of TGF-β exposure in dentine by chemical treatment. Histochem J 2 2000;32:489–494.

    Google Scholar 

  15. Dobie K, Smith G, Sloan AJ, Smith AJ. Effects of alginate hydrogels and TGF-β1 on human dental repair in vitro. Connect Tissue Res 2 2002;43:387–390.

    Google Scholar 

  16. Smith AJ. Vitality of the dentin-pulp complex in health and disease: growth factors as key mediators. J Dent Educ 2003;67:678–689.

    PubMed  Google Scholar 

  17. Tomson PL, Grover LM, Lumley PJ, Sloan AJ, Smith AJ, Cooper PR. Dissolution of bio-active dentine matrix components by mineral trioxide aggregate. J Dent 2007;35:636–642.

    PubMed  Google Scholar 

  18. Butler WT, Ritchie H. The nature and functional significance of dentin extracellular matrix proteins. Int J Dev Biol 1995;39:169–179.

    PubMed  Google Scholar 

  19. Butler WT, Brunn JC, Qin C. Dentin extracellular matrix (ECM) proteins: comparison to bone ECM and contribution to dynamics of dentinogenesis. Connect Tissue Res 2001;44(suppl 1):171–178.

    Google Scholar 

  20. Boskey AL. The role of extracellular matrix components in dentin mineralization. Crit Rev Oral Biol Med 1991;369-87.

  21. Smith AJ, Murray PE, Sloan AJ, Matthews JB, Zhao S. Trandentinal stimulation of tertiary dentinogenesis. Adv Dent Res 2001;15:51–54.

    PubMed  Google Scholar 

  22. Hunter GK, Goldberg HA. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A 1993;90:8562–8565.

    PubMed  Google Scholar 

  23. Goldberg HA, Warner KJ, Stillman MJ, Hunter GK. Determination of the hydroxyapatite-nucleating region of bone sialoprotein. Connect Tissue Res 1996;35:385–392.

    PubMed  Google Scholar 

  24. McLachlan JL, Sloan AJ, Smith AJ, Landini G, Cooper PR. S100 and cytokine expression in caries. Infect Immun 2004;72:4102–4108.

    PubMed  Google Scholar 

  25. Cassidy N, Fahey M, Prime SS, Smith AJ. Comparative analysis of transforming growth factor-β isoforms 1–3 in human and rabbit dentine matrices. Arch Oral Biol 1997;42:219–223.

    PubMed  Google Scholar 

  26. Smith AJ, Smith G. Proteolytic activity of rabbit incisor dentine. Arch Oral Biol 1984;29:1049–1050.

    PubMed  Google Scholar 

  27. Martin-De Las Heras, Valenzuela A, Overall CM. The matrix metalloproteinase gelatinase A in human dentine. Arch Oral Biol 2000;45:757–765.

    PubMed  Google Scholar 

  28. Sulkala M, Larmas M, Sorsa T, Salo T, Tjäderhane L. The localization of matrix metalloproteinase-20 (MMP-20, enamelysin) in mature human teeth. J Dent Res 2002;81:603–607.

    PubMed  Google Scholar 

  29. Sulkala M, Pääkkönen V, Larmas M, Salo T, Tjäderhane L. Matrix metalloproteinase-13 (MMP-13, collagenase-3) is highly expressed in human tooth pulp. Connect Tissue Res 2004;45:231–237.

    PubMed  Google Scholar 

  30. Sulkala M, Tervahartiala T, Sorsa T, Larmas M, Salo T, Tjäderhane L. Matrix metalloproteinase-8 (MMP-8) is the major collagenase in human dentin. Arch Oral Biol 2007;52:121–127.

    PubMed  Google Scholar 

  31. Mazzoni A, Mannello F, Tay FR, Tonti GA, Papa S, Mazzotti G, Di Lenarda R, Pashley DH, Breschi L. Zymographic analysis and characterization of MMP-2 and -9 forms in human sound dentin. J Dent Res 2007;86:436–440. Erratum in J Dent Res 2007;86:792.

    PubMed  Google Scholar 

  32. Pashley DH, Tay FR, Yiu C. Collagen degradation by hostderived enzymes during aging, J Dent Res 2004;83:216–221.

    PubMed  Google Scholar 

  33. Rutherford RB. BMP-7 gene transfer to inflamed ferret dental pulps. Eur J Oral Sci 2001;109:422–424.

    PubMed  Google Scholar 

  34. Smith AJ, Cassidy N, Perry H, Begue-Kirn C, Ruch JV, Lesot H. Reactionary dentinogenesis. Int J Dev Biol 1995;39:273–280.

    PubMed  Google Scholar 

  35. About I, Mitsiadis TA. Molecular aspects of tooth pathogenesis and repair: in vivo and in vitro models. Adv Dent Res 2001;15:59–62.

    PubMed  Google Scholar 

  36. Murray PE, Smith AJ, Windsor LJ, Mjor IA. Remaining dentine thickness and human pulp responses. Int Endodon J 2003;36:33–43.

    Google Scholar 

  37. Murray PE, Smith AJ, Garcia-Godoy F, Lumley PJ. Comparison of operative procedure variables on pupal viability in an ex vivo model. Int Endodon J 2008;41:389–400.

    Google Scholar 

  38. Ruggeri A Jr, Prati C, Mazzoni A, Nucci C, Di Lenarda R, Mazzotti G, Breschi L. Effects of citric acid and EDTA conditioning on exposed root dentin: an immunohistochemical analysis of collagen and proteoglycans. Arch Oral Biol 2007;52:1–8.

    PubMed  Google Scholar 

  39. Scheven BA, Shelton RM, Cooper PR, Walmsley AD, Smith AJ. Therapeutic ultrasound for dental tissue repair. Med Hypotheses 2009;73:591–593.

    PubMed  Google Scholar 

  40. Scheven BA, Man J, Millard JL, Cooper PR, Lea SC, Walmsley AD, Smith AJ. VEGF and odontoblast-like cells: stimulation by low frequency ultrasound. Arch Oral Biol 2009;54:185–191.

    PubMed  Google Scholar 

  41. Scheven BA, Millard JL, Cooper PR, Lea SC, Walmsley AD, Smith AJ. Short-term in vitro effects of low frequency ultrasound on odontoblast-like cells. Ultrasound Med Biol 2007;33:1475–1482.

    PubMed  Google Scholar 

  42. Nakashima M, Tachibana K, Iohara K, Ito M, Ishikawa M, Akamine A. Induction of reparative dentin formation by ultrasound-mediated gene delivery of growth/differentiation factor 11. Hum Gene Ther 2003;14:591–597.

    PubMed  Google Scholar 

  43. Smith AJ, Lesot H. Induction and regulation of crown dentinogenesis: embryonic events as a template for dental tissue repair. Crit Rev Oral Biol Med 2001;12:425–437.

    PubMed  Google Scholar 

  44. Lesot H, Lisi S, Peterkova R, Peterka M, Mitolo V, Ruch JV. Epigenetic signals during odontoblast differentiation. Adv Dent Res 2001;15:8–13.

    PubMed  Google Scholar 

  45. Kitamura C, Ogawa Y, Morotomi T, Terashita M. Differential induction of apoptosis by capping agents during pulp wound healing. J Endodon 2002;29:41–43.

    Google Scholar 

  46. Mitsiadis TA, Fried K, Goridis C. Reactivation of Delta-Notch signaling after injury: complementary expression patterns of ligand and receptor in dental pulp. Exp Cell Res 1999;246:312–318.

    PubMed  Google Scholar 

  47. Dung SZ, Gregory RL, Li Y, Stookey GK. Effect of lactic acid and proteolytic enzymes on the release of organic matrix components from human root dentin. Caries Res 1995;29:483–489.

    PubMed  Google Scholar 

  48. Tay FR, Pashley DH, Loushine RJ, Weller RN, Monticelli F, Osorio R. Self-etching adhesives increase collagenolytic activity in radicular dentin. J Endod 2006;32:862–868.

    PubMed  Google Scholar 

  49. Lehmann N, Debret R, Roméas A, Magloire H, Degrange M, Bleicher F, Sommer P, Seux D. Self-etching increases matrix metalloproteinase expression in the dentin-pulp complex. J Dent Res 2009;88:77–82.

    PubMed  Google Scholar 

  50. Baker SM, Sugars RV, Wendel M, Smith AJ, Waddington RJ, Cooper PR, Sloan AJ. TGF-beta/extracellular matrix interactions in dentin matrix: a role in regulating sequestration and protection of bioactivity. Calcif Tissue Int 2009;85:66–74.

    PubMed  Google Scholar 

  51. Goldberg M, Six N, Chaussain C, DenBesten P, Veis A, Poliard A. Dentin extracellular matrix molecules implanted into exposed pulps generate reparative dentin: a novel strategy in regenerative dentistry. J Dent Res 2009;88:396–399.

    PubMed  Google Scholar 

  52. Veis A. Amelogenin gene splice products: potential signaling molecules. Cell Mol Life Sci 2003;60:38–55.

    PubMed  Google Scholar 

  53. Six N, Septier D, Chaussain-Miller C, Blacher R, DenBesten P, Goldberg M. Dentonin, a MEPE fragment initiates pulp-healing response to injury. J Dent Res 2007;86:780–785.

    PubMed  Google Scholar 

  54. Hilton TJ. Keys to clinical success with pulp capping: a review of the literature. Oper Dent 2009;34:615–625.

    PubMed  Google Scholar 

  55. Hilton TJ. Cavity sealers, liners, and bases: current philosophies and indications for use. Oper Dent 1996;21:134–146.

    PubMed  Google Scholar 

  56. Fridland M, Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ration. J Endod 2003;29:814–817.

    PubMed  Google Scholar 

  57. Fridland M, Rosado R. MTA solubility: a long term study. J Endod 2005;31:376–379.

    PubMed  Google Scholar 

  58. Duarte MAH, de Oliveria Demarchi MCC, Yamashita JC, Kuga MC, de Campos Fraga S. pH and calcium ion release of two rootend filling materials. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;95:345–347.

    PubMed  Google Scholar 

  59. Okabe T, Sakamoto M, Takeuchi H, Matsushima H. Effects of pH on mineralization ability of human dental pulp cells. J Endod 2006;32:198–201.

    PubMed  Google Scholar 

  60. Rashid F, Shiba H, Mizuno N, Mouri Y, Fujita T, Shinohara H, Ogawa T, Kawaguchi H, Kurihara H. The effect of extracellular calcium ion on gene expression of bone-related proteins in human pulp cells. J Endod 2003;29:104–107.

    PubMed  Google Scholar 

  61. Goldberg M, Six N, Decup F, Buch D, Soheili Majd E, Lasfargues J-J, Salih E, Stanislawski L. Application of bioactive molecules in pulp-capping situations. Adv Dent Res 2001;15:91–95.

    PubMed  Google Scholar 

  62. Kaida H, Hamachi T, Anan H, Katsumasa M. Wound healing process of injured pulp tissues with Emdogain gel. J Endod 2008;34:26–30.

    PubMed  Google Scholar 

  63. Nakamura Y, Slaby I, Spahr A, Pezeshki G, Matsumoto K, Lyngstadaas SP. Ameloblastin fusion protein enhances pulpal healing and dentin formation in porcine teeth. Calcif Tissue Int 2006;78:278–284.

    PubMed  Google Scholar 

  64. Nakamura Y, Slaby I, Matsumoto K, Ritchie HH, Lyngstadaas SP. Immunohistochemical characterization of rapid dentin formation induced by enamel matrix derivative. Calcif Tissue Int 2004;75:243–252.

    PubMed  Google Scholar 

  65. Moghaddame-Jafari S, Mantellini MG, Botero TM, McDonald NJ, Nör JE. Effect of ProRoot MTA on pulp cell apoptosis and proliferation in vitro. J Endod 2005;31:387–391.

    PubMed  Google Scholar 

  66. Kuratate M, Yoshiba K, Shigetani Y, Yoshiba N, Ohshima H, Okiji T. Immunohistochemical analysis of nestin, osteopontin, and proliferating cells in the reparative process of exposed dental pulp capped with mineral trioxide aggregate. J Endod 2008;34:970–974.

    PubMed  Google Scholar 

  67. Masuda-Murakami Y, Kobayashi M, Wang X, Yamada Y, Kimura Y, Hossain M, Matsumoto K. Effects of mineral trioxide aggregate on the differentiation of rat dental pulp cells. Acta Histochem 2009 Jun 26. [Epub ahead of print.

  68. Simon S, Cooper P, Smith A. Picard B, Naulin C, Berdal A. Evaluation of a new laboratory model for pulp healing: preliminary study. Int Endod J 2008;41:781–790.

    PubMed  Google Scholar 

  69. Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F. Mineral trioxide aggregate stimulates a biological response in human osteoblasts. J Biomed Mater Res 1997;37:432–439.

    PubMed  Google Scholar 

  70. Tani-Ishii N, Hamada N, Watanabe K, Tujimoto Y, Teranaka T, Umemoto T. Expression of bone extracellular matrix proteins on osteoblast cells in the presence of mineral trioxide. J Endod 2007;33:836–839.

    PubMed  Google Scholar 

  71. Koulaouzidou EA, Papazisis KT, Economides NA, Beltes P, Kortsaris AH. Antiproliferative effect of mineral trioxide aggregate, zinc oxide-eugenol cement, and glass-ionomer cement against three fibroblastic cell lines. J Endod 2005;31:44–46.

    PubMed  Google Scholar 

  72. Costa CAS, Oliveira MF, Giro EMA, Hebling J. Biocompatibility of resin-based materials used as pulp-capping agents. Int Endod J 2003;36:831–839.

    PubMed  Google Scholar 

  73. DeSchepper EJ, Thrasher MR, Thurmond BA. Antibacterial effects of light-cured liners. Am J Dent 1989;2:74–76.

    PubMed  Google Scholar 

  74. Do Nascimiento ABL, Fontana UF, Teixeira HM, Costa CAS. Biocompatibility of a resin-modified glass ionomer cement applied as pulp capping in human teeth. Am J Dent 2000;13:28–34.

    Google Scholar 

  75. Holland R, de Souza V, Nery MJ, Otoboni Filho JA, Bernabé PF, Dezan Júnior E. Reaction of dogs’ teeth to root canal filling with mineral trioxide aggregate or a glass ionomer sealer. J Endod 1999;25:728–730.

    PubMed  Google Scholar 

  76. Murray PE, About I, Franquin JC, Remusat M, Smith AJ. Restorative pulpal and repair responses. J Am Dent Assoc 2001;132:482–491.

    PubMed  Google Scholar 

  77. Six N, Lasfargues J-J, Goldberg M. In vivo study of the pulp reaction to Fuji IX, a glass ionomer cement. J Dent 2000;28:413–422.

    PubMed  Google Scholar 

  78. Mousavinasab M, Namazikhah MS, Sarabi N, Jajarm HH, Bidar M, Ghavamnasiri M. Histopathology study on pulp response to glass ionomers in human teeth. J Calif Dent Assoc 2008;36:51–55.

    PubMed  Google Scholar 

  79. Massara ML, Alves JB, Brandão PR. Atraumatic restorative treatment: clinical, ultrastructural and chemical analysis. Caries Res 2002;36:430–436.

    PubMed  Google Scholar 

  80. Ngo HC, Mount G, McIntyre J, Tuisuva J, Von Doussa RJ. Chemical exchange between glass-ionomer restorations and residual carious dentine in permanent molars: an in vivo study. J Dent 2006;34:608–613.

    PubMed  Google Scholar 

  81. Duque C, Hebling J, Smith AJ, Giro EM, Oliveira MF, de Souza Costa CA. Reactionary dentinogenesis after applying restorative materials and bioactive dentin matrix molecules as liners in deep cavities prepared in nonhuman primate teeth. J Oral Rehabil 2006;33:452–461.

    PubMed  Google Scholar 

  82. Smith AJ, Tobias RS, Murray PE. Transdentinal stimulation of reactionary dentinogenesis in ferrets by dentine matrix components. J Dent 2001;29:341–346.

    PubMed  Google Scholar 

  83. De Souza Costa CA, Vaerten MA, Edwards CA, Hanks CT. Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater 1999;15:434–441.

    Google Scholar 

  84. Hebling J, Giro EM, Costa CA. Biocompatibility of an adhesive system applied to exposed human dental pulp. J Endod 1999;25:676–682.

    PubMed  Google Scholar 

  85. Hebling J, Giro EM, Costa CA. Human pulp response after an adhesive system application in deep cavities. J Dent 1999;27:557–564.

    PubMed  Google Scholar 

  86. Brackett WW, Tay FR, Brackett MG, Dib A, Sword RJ, Pashley DH. The effect of chlorhexidine on dentin hybrid layers in vivo. Oper Dent 2007;32:107–111.

    PubMed  Google Scholar 

  87. Carrilho MR, Geraldeli S, Tay F, de Goes MF, Carvalho RM, Tjäderhane L, Reis AF, Hebling J, Mazzoni A, Breschi L, Pashley D. In vivo preservation of the hybrid layer by chlorhexidine. J Dent Res 2007;86:529–533.

    PubMed  Google Scholar 

  88. Mazzoni A, Pashley DH, Nishitani Y, Breschi L, Mannello F, Tjäderhane L, Toledano M, Pashley EL, Tay FR. Reactivation of inactivated endogenous proteolytic activities in phosphoric acidetched dentine by etch-and-rinse adhesives. Biomaterials 2006;27:4470–4476.

    PubMed  Google Scholar 

  89. Mantellini MG, Botero TM, Yaman P, Dennison JB, Hanks CT, Nör JE. Adhesive resin induces apoptosis and cell-cycle arrest of pulp cells. J Dent Res 2003;82:592–596.

    PubMed  Google Scholar 

  90. Pereira JC, Segala AD, Costa CA. Human pulpal response to direct pulp capping with an adhesive system. Am J Dent 2000;13:139–147.

    PubMed  Google Scholar 

  91. Mantellini MG, Botero T, Yaman P, Dennison JB, Hanks CT, Nör JE. Adhesive resin and the hydrophilic monomer HEMA induce VEGF expression on dental pulp cells and macrophages. Dent Mater 2006;22:434–440.

    PubMed  Google Scholar 

  92. Costa CA, Mesas AN, Hebling J. Pulp response to direct capping with an adhesive system. Am J Dent 2000;13:81–87.

    PubMed  Google Scholar 

  93. Bagis B, Atilla P, Cakar N, Hasanreisoglu U. Immunohistochemical evaluation of endothelial cell adhesion molecules in human dental pulp: effects of tooth preparation and adhesive application. Arch Oral Biol 2007;52:705–711.

    PubMed  Google Scholar 

  94. Wisithphrom K, Murray PE, About I, Windsor LJ. Interactions between cavity preparation and restoration events and their effects on pulp vitality. Int J Periodontics Restorative Dent 2006;26:596–605.

    PubMed  Google Scholar 

  95. Markowitz K, Moynihan M, Liu M, Kim S. Biologic properties of eugenol and zinc oxide-eugenol. A clinically oriented review. Oral Surg Oral Med Oral Pathol 1992;73:729–737.

    PubMed  Google Scholar 

  96. Santos MCLG, De Souza AP, Gerlach RF, Trevilatto PC, Scarel-Caminaga RM, Line SRP. Inhibition of human pulpal gelatinases (MMP-2 and MMP-9) by zinc oxide cements. J Oral Rehabil 2004;31:660–664.

    PubMed  Google Scholar 

  97. Bagis B, Atilla P, Cakar N, Hasanreisoglu U. An immunohistochemical evaluation of cell adhesion molecules in human dental pulp after tooth preparation and application of temporary eluting cements. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:137–144.

    PubMed  Google Scholar 

  98. Sena M, Yamashita Y, Nakano Y, Ohgaki M, Nakamura S, Yamashita K, Takagi Y. Octacalcium phosphate-based cement as a pulp-capping agent in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:749–755.

    PubMed  Google Scholar 

  99. Zhang W, Walboomers XF, Jansen JA. The formation of tertiary dentin after pulp capping with a calcium phosphate cement, loaded with PLGA microparticles containing TGF-beta1. J Biomed Mater Res A 2008;85:439–444.

    PubMed  Google Scholar 

  100. Schmidlin PR, Zehnder M, Imfeld T, Swain MV. Comparative assessment of hardening of demineralized dentin under lining materials using an ultramicroindentation system. J Biomed Mater Res B Appl Biomater 2007;83:199–205.

    PubMed  Google Scholar 

  101. Lööf J, Svahn F, Jarmar T, Engqvist H, Pameijer CH. A comparative study of the bioactivity of three materials for dental applications. Dent Mater 2008;24:653–659.

    PubMed  Google Scholar 

  102. Azarpazhooh A, Limeback H. Clinical efficacy of casein derivatives: a systematic review of the literature. J Am Dent Assoc 2008;139:915–924.

    PubMed  Google Scholar 

  103. Ten Cate JM. Remineralization of deep enamel dentin caries lesions. Aust Dent J 2008;53:281–285.

    PubMed  Google Scholar 

  104. Tay FR, Pashley DH. Guided tissue remineralisation of partially demineralised human dentine. Biomaterials 2008;29:1127–1137.

    PubMed  Google Scholar 

  105. Ferracane JL, Mitchell JC, Musanje L. Application mode and durability evaluation of biomimetic dentin desensitizer. J Dent Res 2006;85(special issue B):2455.

    Google Scholar 

  106. Kuo T, Lee B, Kang S, Lin F, Lin C. Cytotoxicity of DP-Bioglass paste used for treatment of dentin hypersensitivity. J Endod 2007;33:451–454.

    PubMed  Google Scholar 

  107. Yli-Urpo H, Närhi M, Närhi T. Compound changes and tooth mineralization effects of glass ionomer cements containing bioactive glass (S53P4), an in vivo study. Biomaterials 2005;26:5934–5941.

    PubMed  Google Scholar 

  108. Mitchell JC, McKinney R, McAllister P, Evans T, Wan Y, Dyer SR. Incorporation of sol-gel bioactive glass to form bioactive glass-ionomer cement. J Dent Res 2005;84(special issue A):0529.

    Google Scholar 

  109. Xie D, Zhao J, Weng Y, Park JG, Jiang H, Platt JA. Bioactive glass-ionomer cement with potential therapeutic function to dentin capping mineralization. Eur J Oral Sci 2008;116:479–487

    PubMed  Google Scholar 

  110. Choi JY, Lee HH, Kim HW. Bioactive sol-gel glass added ionomer cement for the regeneration of tooth structure. J Mater Sci Mater Med 2008;19:3287–3294.

    PubMed  Google Scholar 

  111. Yli-Urpo H, Närhi T, Söderling E. Antimicrobial effects of glass ionomer cements containing bioactive glass (S53P4) on oral microrganisms in vitro. Acta Odontol Scand 2003;61:241–246

    PubMed  Google Scholar 

  112. Yli-Urpo H, Vallittu PK, Närhi TO, Forsback AP, Väkiparta M. Release of silica, calcium, phosphorus, and fluoride from glass ionomer cement containing bioactive glass. J Biomater Appl 2004;19:5–20.

    PubMed  Google Scholar 

  113. Sloan AJ, Shelton RM, Hann AC, Moxham BJ, Smith AJ. An in vitro approach for the study of dentinogenesis by organ culture of the dentine-pulp complex from rat incisor teeth. Arch Oral Biol 1998;43:421–430.

    PubMed  Google Scholar 

  114. Sloan AJ, Smith AJ. Stimulation of the dentin-pulp complex of rat incisor teeth by transforming growth factor-B isoforms 1–3 in vitro. Arch Oral Biol 1999;44:149–156.

    PubMed  Google Scholar 

  115. Sloan AJ, Rutherford RB, Smith AJ. Stimulation of the rat dentine-pulp complex by bone morphogenetic protein-7 in vitro. Arch Oral Biol 2000;45:173–177.

    PubMed  Google Scholar 

  116. Garrocho-Rangel, Flores H, Silva-Herzog D, Hernandez-Sierra F, Mandeville P, Pozos-Guillen AJ. Efficacy of EMD versus calcium hydroxide in direct pulp capping of primary molars: a randomized controlled clinical trial. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:733–738.

    PubMed  Google Scholar 

  117. Goldberg M, Lacerda-Pinheiro S, Jegat N, Six N, Septier D, Priam F, Bonnefoix M, Tompkins K, Chardin H, Denbesten P, Veis A, Poliard A. The impact of bioactive molecules to stimulate tooth repair and regeneration as part of restorative dentistry. Dent Clin N Am 2006;50:277–298.

    PubMed  Google Scholar 

  118. Yamada M, Kojima N, Paranjpe A, Att W, Aita H, Jewett A, Ogawa T. N-Acetyl cysteine (NAC)-assisted detoxification of PMMA resin. J Dent Res 2008;87:372–377.

    PubMed  Google Scholar 

  119. Eckhardt A, Gerstmayr N, Hiller KA, Bolay C, Waha C, Spagnuolo G, Camargo C, Schmalz G, Schweikl H. TEGDMA-induced oxidative DNA damage and activation of ATM and MAP kinases. Biomaterials 2009;30:2006–2014.

    PubMed  Google Scholar 

  120. Surh YJ, Kundu JK, Na HK. Nrf2 as a master redox switch in turning on the cellular signaling involved in the induction of cytoprotective genes by some chemopreventive phytochemicals. Planta Med 2008;74:1526–1539.

    PubMed  Google Scholar 

  121. Numazawa S, Yoshida T. Nrf2-dependent gene expressions: a molecular toxicological aspect. J Toxicol Sci 2004;29:81–89.

    PubMed  Google Scholar 

  122. Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006;72:1439–1452.

    PubMed  Google Scholar 

  123. Paula-Silva FW, Ghosh A, Silva LA, Kapila YL. TNF-alpha promotes an odontoblastic phenotype in dental pulp cells. J Dent Res 2009;88:339–344.

    PubMed  Google Scholar 

  124. Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y. Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 2007;59:27–33.

    PubMed  Google Scholar 

  125. Wang Z, Wesche H, Stevens T, Walker N, Yeh WC. IRAK-4 inhibitors for inflammation. Curr Top Med Chem 2009;9:724–737.

    PubMed  Google Scholar 

  126. Khan AA, Dionne RA. The COX-2 inhibitors: new analgesic and anti-inflammatory drugs. Dent Clin N Am 2002;46:679–690.

    PubMed  Google Scholar 

  127. Mehdawi I, Neel EA, Valappil SP, Palmer G, Salih V, Pratten J, Spratt DA, Young AM. Development of remineralizing, antibacterial dental materials. Acta Biomater 2009;5:2525–2539.

    PubMed  Google Scholar 

  128. Imazato S, Kinomoto Y, Tarumi H, Torii M, Russell RR, McCabe JF. Incorporation of antibacterial monomer MDPB into dentin primer. J Dent Res 1997;76:768–772.

    PubMed  Google Scholar 

  129. Imazato S, Kinomoto Y, Tarumi H, Ebisu S, Tay FR. Antibacterial activity and bonding characteristics of an adhesive resin containing antibacterial monomer MDPB. Dent Mater 2003;19:313–319.

    PubMed  Google Scholar 

  130. Li F, Chen J, Chai Z, Zhang L, Xiao Y, Fang M, Ma S. Effects of a dental adhesive incorporating antibacterial monomer on the growth, adherence and membrane integrity of Streptococcus mutans. J Dent 2009;37:289–296.

    PubMed  Google Scholar 

  131. Hebling J, Pashley DH, Tjäderhane I, Tay FR. Chlorhexidine arrests subclinical degradation of dentin hybrid layers in vivo. J Dent Res 2005;84:741–746.

    PubMed  Google Scholar 

  132. Carvalho FG, Fucio SB, Pascon FM, Kantovitz KR, Correr-Sobrinho L, Puppin-Rontani RM. Effect of gamma irradiation on fluoride release and antibacterial activity of resin dental materials. Braz Dent J 2009;20:122–126.

    PubMed  Google Scholar 

  133. Vaidyanathan M, Sheehy EC, Gilbert SC, Beighton D. Antimicrobial properties of dentine bonding agents determined using in vitro and ex vivo methods. J Dent 2009;37:514–521.

    PubMed  Google Scholar 

  134. Korkmaz Y, Ozalp M, Attar N. Comparison of the antibacterial activity of different self-etching primers and adhesives. J Contemp Dent Pract 2008;9:57–64.

    PubMed  Google Scholar 

  135. Dabsie F, Gregoire G, Sixou M, Sharrock P. Does strontium play a role in the cariostatic activity of glass ionomer? Strontium diffusion and antibacterial activity. J Dent 2009;37:554–559.

    PubMed  Google Scholar 

  136. Nakajo K, Imazato S, Takahashi Y, Kiba W, Ebisu S, Takahashi N. Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci. Dent Mater 2009;25:703–708.

    PubMed  Google Scholar 

  137. Moseley R, Waddington RJ, Sloan AJ, Smith AJ, Hall RC, Embery G. The influence of fluoride exposure on dentin mineralization using an in vitro organ culture model. Calcif Tissue Int 2003;73:470–475.

    PubMed  Google Scholar 

  138. Moseley R, Sloan AJ, Waddington RJ, Smith AJ, Hall RC, Embery G. The influence of fluoride on the cellular morphology and synthetic activity of the rat dentin-pulp complex in vitro. Arch Oral Biol 2003;48:39–46.

    PubMed  Google Scholar 

  139. Garcez AS, Nuñez SC, Hamblin MR, Ribeiro MS. Antimicrobial effects of photodynamic therapy on patients with necrotic pulps and periapical lesion. J Endod 2008;34:138–142.

    PubMed  Google Scholar 

  140. Imazato S. Bio-active restorative materials with antibacterial effects: new dimension of innovation in restorative dentistry. Dent Mater J 2009;28:11–19.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack L. Ferracane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferracane, J.L., Cooper, P.R. & Smith, A.J. Can interaction of materials with the dentin-pulp complex contribute to dentin regeneration?. Odontology 98, 2–14 (2010). https://doi.org/10.1007/s10266-009-0116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10266-009-0116-5

Key words

Navigation