Skip to main content

Advertisement

Log in

TNM staging for GIT cancers is correlated with the level of MMPs and TGF-β1

  • Original Article
  • Published:
Clinical and Experimental Medicine Aims and scope Submit manuscript

Abstract

Gastrointestinal (GIT) cancers represent the third common cancers worldwide, characterized by rapid progression and higher mortality rate. Matrix metalloproteinases (MMPs) play an important role in cancer metastases. The present study was conducted to estimate and evaluate the role of MMP-7, -9, -10 and -12 and TGF β1 along with conventional biomarkers (CEA and CA19-9) in gastric (GC), pancreatic (PC) and colorectal cancer (CRC) staging system according to tumor size (T), included lymph node (N) and metastasis (M). Seventy-five patients were divided into GC group (n = 25), PC group (n = 25), CRC group (n = 25) and twenty-five healthy subjects (control group). Serum levels of MMP-7, -10 and -12 were assayed simultaneously using luminex multiplex technique. Also, MMP-9, TGF-β1, CA19-9 and CEA were determined by ELISA. MMP-7,-9,-10, -12, TGF-β1 and CEA levels were significantly (p < 0.001) higher in GIT cancer groups compared with control. CA19-9 was significantly (p < 0.001) higher in PC and CRC groups compared with control. MMP-9 was positively correlated with TNM staging in PC patients. MMP-12 was negatively correlated with T in PC and positively correlated with M in CRC group. CA 19-9 was positively correlated with M grade in CRC. Depending on the estimated cutoff values of area under receiver curve; CA19-9 and MMP-7 were excellent diagnostic markers in PC, CEA and MMP-7 were excellent in CRC, and MMP-7 and MMP-9 were excellent in GC. Our findings indicated the clinical utility of MMPs in diagnosis and TNM staging of GIT cancers along with CEA and CA19-9.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GIT:

Gastrointestinal

MMP:

Matrix metalloproteinases

PC:

Pancreatic cancer

CRC:

Colorectal cancer

GC:

Gastric cancer

HCC:

Hepatocellular carcinoma

VEGF:

Vascular endothelial growth factor

EGF:

Epidermal growth factor

TGF-β1:

Transforming growth factor beta-1

TIMP:

Tissue inhibitors of metalloproteinases

CEA:

Carcinoembryonic antigen

CA19-9:

Carbohydrate antigen 19-9

ELISA:

Enzyme-linked immunosorbent assay

ROC:

Receiver operating characteristic

AUC:

Area under the curve

DSe:

Diagnostic sensitivity

DSp:

Diagnostic specificity

EGFR:

Epidermal growth factor receptor

MEK–ERK:

Mitogen-activated protein kinase–extracellular signal regulated protein kinase

TJ:

Tight junctions

S100A4:

S100 calcium-binding protein A4

PAI:

Plasminogen activator inhibitor

HB-EGF:

Heparin-binding epidermal growth factor

References

  1. Grierson P, Lim KH, Amin M. Immunotherapy in gastrointestinal cancers. J Gastrointest Oncol. 2017;8(3):474–84.

    PubMed  PubMed Central  Google Scholar 

  2. Moridikia A, Mirzaei H, Sahebkar A, Salimian J. MicroRNAs: potential candidates for diagnosis and treatment of colorectal cancer. J Cell Physiol. 2018;233(2):901–13.

    CAS  PubMed  Google Scholar 

  3. Sitarz R, Skierucha M, Mielko J, Offerhaus GJA, Maciejewski R, Polkowski WP. Gastric cancer: epidemiology, prevention, classification, and treatment. Cancer Manag Res. 2018;10:239–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    PubMed  Google Scholar 

  5. Gialeli C, Theocharis AD, Karamanos NK. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J. 2011;278(1):16–27.

    CAS  PubMed  Google Scholar 

  6. Araújo RF, Lira GA, Vilaça JA, et al. Prognostic and diagnostic implications of MMP-2, MMP-9, and VEGF-α expressions in colorectal cancer. Pathol Res Pract. 2015;211(1):71–7.

    PubMed  Google Scholar 

  7. Castro-Castro A, Marchesin V, Monteiro P, Lodillinsky C, Rossé C, Chavrier P. Cellular and Molecular Mechanisms of MT1-MMP-Dependent Cancer Cell Invasion. Annu Rev Cell Dev Biol. 2016;32(1):555–76.

    CAS  PubMed  Google Scholar 

  8. Da Vià MC, Solimando AG, Garitano-Trojaola A, et al. CIC mutation as a molecular mechanism of acquired resistance to combined BRAF–MEK inhibition in extramedullary multiple myeloma with central nervous system involvement. Oncologist. 2020;25(2):112–8.

    PubMed  Google Scholar 

  9. Zitka O, Kukacka J, Krizkova S, et al. Matrix Metalloproteinases. Biochim Biophys Acta - Mol Cell Res. 2010;1803(1):1–2.

    Google Scholar 

  10. Isaacson KJ, Martin Jensen M, Subrahmanyam NB, Ghandehari H. Matrix-metalloproteinases as targets for controlled delivery in cancer: an analysis of upregulation and expression. J Control Release. 2017;259:62–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yeh Y, Sheu B. Matrix metalloproteinases and their inhibitors in the gastrointestinal cancers: current knowledge and clinical potential. Metalloproteinases In Medicine. 2014;1:3–13.

    Google Scholar 

  12. Verma S, Kesh K, Ganguly N, Jana S, Swarnakar S. Matrix metalloproteinases and gastrointestinal cancers: impacts of dietary antioxidants. World J Biol Chem. 2014;5(3):355–76.

    PubMed  PubMed Central  Google Scholar 

  13. Kahlert C, Fiala M, Musso G, et al. Prognostic impact of a compartment-specific angiogenic marker profile in patients with pancreatic cancer. Oncotarget. 2014;5(24):12978–89.

    PubMed  PubMed Central  Google Scholar 

  14. Herszényi L, Hritz I, Lakatos G, Varga MZ, Tulassay Z. The behavior of matrix metalloproteinases and their inhibitors in colorectal cancer. Int J Mol Sci. 2012;13(10):13240–63.

    PubMed  PubMed Central  Google Scholar 

  15. Klupp F, Neumann L, Kahlert C, et al. Serum MMP7, MMP10 and MMP12 level as negative prognostic markers in colon cancer patients. BMC Cancer. 2016;16:1–9.

    Google Scholar 

  16. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    CAS  PubMed  Google Scholar 

  17. Sisik A, Kaya M, Bas G, Basak F, Alimoglu O. CEA and CA 19-9 are Still Valuable Markers for the Prognosis of Colorectal and Gastric Cancer Patients. Asian Pacific J Cancer Prev. 2013;14(7):4289–94.

    Google Scholar 

  18. Kim JE, Lee KT, Lee JK, Paik SW, Rhee JC, Choi KW. Clinical usefulness of carbohydrate antigen 19-9 as a screening test for pancreatic cancer in an asymptomatic population. J Gastroenterol Hepatol. 2004;19(2):182–6.

    PubMed  Google Scholar 

  19. Gui JC, Yan WL, Liu XD. CA19-9 and CA242 as tumor markers for the diagnosis of pancreatic cancer: a meta-analysis. Clin Exp Med. 2014;14(2):225–33.

    CAS  PubMed  Google Scholar 

  20. Amin MB, Edge S, Greene F, et al. AJCC cancer staging manual. American Joint Commission on Cancer. 8th ed. New YorkNew York: Springer; 2017.

    Google Scholar 

  21. Brierley J, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumors. 8th ed. Chichester: Wiley; 2017.

    Google Scholar 

  22. Lilliefors HW. On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J Am Stat Assoc. 1967;62(318):399–402.

    Google Scholar 

  23. McKight PE, Najab J. Kruskal–Wallis test corsini encyclopedia of psychology. New York: Wiley; 2010.

    Google Scholar 

  24. Tsiaousidou A, Tsaroucha AK, Lambropoulou M, et al. Increased B7H4 tissue expression correlates with high CA19.9 serum levels and a worse prognosis of pancreatic adenocarcinoma. Clin Exp Med. 2016;16(3):351–6.

    CAS  PubMed  Google Scholar 

  25. Jakubowska K, Pryczynicz A, Januszewska J, et al. Expressions of Matrix Metalloproteinases 2, 7, and 9 in Carcinogenesis of Pancreatic Ductal Adenocarcinoma. Dis Markers. 2016;2016:9895721.

    PubMed  PubMed Central  Google Scholar 

  26. Jabłońska-Trypuć A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 2016;31(1):177–83.

    PubMed  Google Scholar 

  27. Park HD, Kang ES, Kim JW, Lee KT, Lee KH, Park YS, et al. Serum CA19-9, cathepsin D, and matrix metalloproteinase-7 as a diagnostic panel for pancreatic ductal adenocarcinoma. Proteomics. 2012;12(23–24):3590–7.

    CAS  PubMed  Google Scholar 

  28. Tan X, Egami H, Abe M, Nozawa F, Hirota M, Ogawa M. Involvement of MMP-7 in invasion of pancreatic cancer cells through activation of the EGFR mediated MEK–ERK signal transduction pathway. J Clin Pathol. 2005;58(12):1242–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Cheng P, Jiang FH, Zhao LM, et al. Human Macrophage Metalloelastase Correlates with Angiogenesis and Prognosis of Gastric Carcinoma. Dig Dis Sci. 2010;55(11):3138–46.

    CAS  PubMed  Google Scholar 

  30. Xiang T, Xia X, Yan W. Expression of Matrix Metalloproteinases-2/-9 is Associated with Microvessel Density in Pancreatic Cancer. Am J Ther. 2017;24(4):e431–4.

    PubMed  Google Scholar 

  31. Giannopoulos G, Pavlakis K, Parasi A, et al. The expression of matrix metalloproteinases-2 and -9 and their tissue inhibitor 2 in pancreatic ductal and ampullary carcinoma and their relation to angiogenesis and clinicopathological parameters. Anticancer Res. 2008;28(3B):1875–82.

    PubMed  Google Scholar 

  32. Mroczko Barbara, Groblewska Magdalena, Okulczyk Bogna, Bogusław Kędra MS. The diagnostic value of matrix metalloproteinase 9 (MMP-9) and tissue inhibitor of matrix metalloproteinases 1 (TIMP-1) determination in the sera of colorectal adenoma and cancer patients. Int J Colorectal Dis. 2010;25(10):1177–84.

    PubMed  PubMed Central  Google Scholar 

  33. Huang L, Xu Y, Cai G, Guan Z, Cai S. Downregulation of S100A4 expression by RNA interference suppresses cell growth and invasion in human colorectal cancer cells. Oncol Rep. 2012;27(4):917–22.

    CAS  PubMed  Google Scholar 

  34. Zhang G, Miyake M, Lawton A, Goodison S, Rosser CJ. Matrix metalloproteinase-10 promotes tumor progression through regulation of angiogenic and apoptotic pathways in cervical tumors. BMC Cancer. 2014;14(1):310.

    PubMed  PubMed Central  Google Scholar 

  35. Zhang W, Li Y, Yang L, et al. Knockdown of MMP-7 inhibits cell proliferation and enhances sensitivity to 5-fluorouracil and X-ray irradiation in colon cancer cells. Clin Exp Med. 2014;14(1):99–106.

    CAS  PubMed  Google Scholar 

  36. Said A, Raufman J-P, Xie G. The Role of Matrix Metalloproteinases in Colorectal Cancer. Cancers. 2014;6(1):366–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yang W, Arii S, Gorrin-Rivas MJ, Mori A, Onodera H, Imamura M. Human macrophage metalloelastase gene expression in colorectal carcinoma and its clinicopathologic significance. Cancer. 2001;91(7):1277–83.

    CAS  PubMed  Google Scholar 

  38. Shi H, Xu JM, Hu NZ, Wang XL, Mei Q, Song YL. Transfection of mouse macrophage metalloelastase gene into murine CT-26 colon cancer cells suppresses orthotopic tumor growth, angiogenesis and vascular endothelial growth factor expression. Cancer Lett. 2006;233(1):139–50.

    CAS  PubMed  Google Scholar 

  39. Rasic I, Rebic V, Rasic A, Aksamija G, Radovic S. The association of simultaneous increase in interleukin-6, C reactive protein, and matrix metalloproteinase-9 serum levels with increasing stages of colorectal cancer. J Oncol. 2018;2018:2830503.

    PubMed  PubMed Central  Google Scholar 

  40. Dragutinović VV, Radonjić NV, et al. Matrix metalloproteinase-2 (MMP-2) and -9 (MMP-9) in preoperative serum as independent prognostic markers in patients with colorectal cancer. Mol Cell Biochem. 2011;355(1–2):173–8.

    PubMed  Google Scholar 

  41. Loesch M, Zhi H-Y, Hou S-W, et al. p38γ MAPK Cooperates with c-Jun in trans -Activating Matrix Metalloproteinase 9. J Biol Chem. 2010;285(20):15149–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Dragutinović VV, Radovanović NS, Izrael-Zivković LT, Vrvić MM. Detection of gelatinase B activity in serum of gastric cancer patients. World J Gastroenterol. 2006;12(1):105–9.

    PubMed  PubMed Central  Google Scholar 

  43. Suzuki M, Raab G, Moses MA, Fernandez CA, Klagsbrun M. Matrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Biol Chem. 1997;272(50):31730–7.

    CAS  PubMed  Google Scholar 

  44. Chu D, Zhang Z, Li Y, et al. Matrix metalloproteinase-9 is associated with disease-free survival and overall survival in patients with gastric cancer. Int J Cancer. 2011;129(4):887–95.

    CAS  PubMed  Google Scholar 

  45. Dragutinović V, Izrael-Zivković L, Radovanović N. Relation of matrix metalloproteinase-9 to different stages of tumors in the serum of gastric cancer. Dig Dis Sci. 2009;54(6):1203–7.

    PubMed  Google Scholar 

  46. Yu Q, Stamenkovic I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14(2):163–76.

    PubMed  PubMed Central  Google Scholar 

  47. Krstic J, Santibanez JF. Transforming growth factor-beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. ScientificWorldJournal. 2014;2(014):521754.

    Google Scholar 

  48. Porcelli L, Iacobazzi RM, Di Fonte R, et al. CAFs and TGF-β signaling activation by mast cells contribute to resistance to Gemcitabine/Nabpaclitaxel in Pancreatic Cancer. Cancers (Basel). 2019;11(3):1–17.

    Google Scholar 

  49. Hawinkels LJAC, Verspaget HW, Van Duijn W, et al. Tissue level, activation and cellular localisation of TGF-β1 and association with survival in gastric cancer patients. Br J Cancer. 2007;97(3):398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Tsushima H, Kawata S, Tamura S, et al. High levels of transforming growth factor in patients with colorectal cancer: association with disease progression. Gastroenterology. 1996;110(2):375–82.

    CAS  PubMed  Google Scholar 

  51. Javle M, Li Y, Tan D, Dong X, et al. Biomarkers of TGF-β signaling pathway and prognosis of pancreatic cancer. PLoS ONE. 2014;9(1):85942.

    Google Scholar 

  52. Li X, Yue Z-C, Zhang Y-Y, et al. Elevated serum level and gene polymorphisms of TGF-β1 in gastric cancer. J Clin Lab Anal. 2008;22(3):164–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Emara M, Cheung P-Y, Grabowski K, Sawicki G, Wozniak M. Serum levels of matrix metalloproteinase-2 and -9 and conventional tumor markers (CEA and CA 19-9) in patients with colorectal and gastric cancers. Clin Chem Lab Med. 2009;47(8):993–1000.

    CAS  PubMed  Google Scholar 

  54. Zhang Y, Yang J, Li H, Wu Y, Zhang H, Chen W. Tumor markers CA19-9, CA242 and CEA in the diagnosis of pancreatic cancer: a meta-analysis. Int J Clin Exp Med. 2015;8(7):11683–91.

    PubMed  PubMed Central  Google Scholar 

  55. Levy M, Visokai V, Lipska L, Topolcan O. Tumor markers in staging and prognosis of colorectal carcinoma. Neoplasma. 2008;55(2):138–42.

    CAS  PubMed  Google Scholar 

  56. Wu C, Wu M, Chiang E, et al. Plasma Matrix Metalloproteinase-9 Level Is Better than Serum Matrix Metalloproteinase-9 Level to Predict Gastric Cancer Evolution. Clin Cancer Res. 2007;13(7):2054–60.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the medical staff of Oncology center, Mansoura University, Mansoura, Egypt, for their help in collecting patient’s data and samples for analysis.

Funding

The research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors funded the research.

Author information

Authors and Affiliations

Authors

Contributions

El-Ashmawy NE conceived the presented idea, analyzed the data and approved the manuscript in final version for publication. Khedr NF planned the experiments, wrote and reviewed the manuscript and approved it for publication. Al-Ashmawy GM designed the study, reviewed the manuscript and approved it for publication. Mansour MG conducted the research, drafted the manuscript and approved it for final approval.

Corresponding authors

Correspondence to Naglaa F. Khedr or Mohamed G. Mansour.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Ashmawy, N.E., Khedr, N.F., Mansour, M.G. et al. TNM staging for GIT cancers is correlated with the level of MMPs and TGF-β1. Clin Exp Med 20, 545–555 (2020). https://doi.org/10.1007/s10238-020-00651-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10238-020-00651-2

Keywords

Navigation