Skip to main content

Advertisement

Log in

Climate change effects on the marine characteristics of the Aegean and Ionian Seas

  • Published:
Ocean Dynamics Aims and scope Submit manuscript

Abstract

This paper addresses the effects of estimated climate change on the sea-surface dynamics of the Aegean and Ionian Seas (AIS). The main aim is the identification of climate change impacts on the severity and frequency of extreme storm surges and waves in areas of the AIS prone to flooding. An attempt is made to define design levels for future research on coastal protection in Greece. Extreme value analysis is implemented through a nonstationary generalized extreme value distribution function, incorporating time harmonics in its parameters, by means of statistically defined criteria. A 50-year time span analysis is adopted and changes of means and extremes are determined. A Regional Climate Model (RegCM3) is implemented with dynamical downscaling, forced by ECHAM5 fields under 20C3M historical data for the twentieth century and the SRES-A1B scenario for the twenty-first century. Storm surge and wave models (GreCSSM and SWAN, respectively) are used for marine climate simulations. Comparisons of model results with reanalysis and field data of atmospheric and hydrodynamic characteristics, respectively, are in good agreement. Our findings indicate that the dynamically downscaled RegCM3 simulation adequately reproduces the present general circulation patterns over the Mediterranean and Greece. Future changes in sea level pressure and mean wind fields are estimated to be small, yet significant for marine extremes. In general, we estimate a projected intensification of severe wave and storm surge events during the first half of the twenty-first century and a subsequent storminess attenuation leading to the resettlement of milder extreme marine events with increased prediction uncertainty in the second half of the twenty-first century.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

AICc:

Akaike Information Criterion correction

AIS:

Aegean and Ionian Seas

AVISO:

Archiving, Validation and Interpretation of Satellite Oceanographic data

BACC:

BALTEX Assessment of Climate Change for the Baltic Sea basin

CCI:

Climate Change Index (symbol: CCI)

CDF:

Cumulative distribution function

EI:

Error Index (symbol: EI)

EVT:

Extreme Value Theory

GCM:

Global Climate Model

GEV:

Generalized extreme value

GEBCO:

General Bathymetric Chart of the Ocean

GRACE:

Gravity Research And Climate Experiment (NASA)

GreCSSM:

Greek Climatic Storm Surge Model

HNHS:

Hellenic Navy Hydrographic Service

HRP:

Hit rate of percentiles (symbol: HRP)

IFS:

Integrated Forecast System

IPCC:

Intergovernmental Panel on Climate change

MAE:

Mean absolute error

MeCSSM:

Mediterranean Climatic Storm Surge Model

MLEs:

Maximum likelihood estimates (symbol: MLEs)

MSL:

Mean sea level (symbol: MSL)

NAO:

North Atlantic Oscillation

POT:

Peaks over threshold

RCM:

Regional Climatic Model

RegCM3:

Regional Climate Model 3rd version

SLH:

Sea level height (due to storm surges) (symbol: SLH)

SLP:

Sea level pressure (in the atmosphere) (symbol: SLP)

SLR:

Sea level rise (long-term) (symbol: SLR)

SRES:

Special Report on Emission Scenarios

SSI:

Storm Surge Index (symbol: SSI)

SWAN:

Simulating WAves Nearshore

SWH:

Significant wave height (symbol: H s )

WAM:

WAve prediction Model

References

  • Adloff F, Somot S, Sevault F, Jordà G, Aznar R, Deque M, Herrmann M, Marcos M, Dubois C, Padorno E, Alvarez-Fanjul E, Gomis D (2015) Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim Dyn 45:2775–2802

    Article  Google Scholar 

  • Anagnostopoulou C, Zanis P, Katragkou E, Tegoulias I, Tolika K (2014) Recent past and future patterns of the Etesian winds based on regional scale climate model simulations. Clim Dyn 42:1819–1836

    Article  Google Scholar 

  • Androulidakis YS, Kombiadou KD, Makris CV, Baltikas VN, Krestenitis YN (2015) Storm surges in the Mediterranean Sea: variability and trends under future climatic conditions. Dynam Atmos Ocean 71:56–82

    Article  Google Scholar 

  • Athanassoulis GA, Belibassakis KA (2002) Probabilistic description of metocean parameters by means of kernel density models 1. Theoretical background and first results. Appl Ocean Res 24(1):1–20

    Article  Google Scholar 

  • Athanassoulis GA, Skarsoulis EK (1992) Wind and wave atlas of the northeastern Mediterranean Sea. Loukakis TA (ed), Laboratory of Ship and Marine Hydrodynamics, Dept. of Naval Architecture and Marine Engineering, National Technical University of Athens, Greece. Prepared under the authority of Hellenic Navy General Staff

  • Athanassoulis GA et al (2004) Wind and wave atlas of the Mediterranean Sea. Western European Armaments Organisation Research Cell

  • Barry RG, Carleton AM (2001) Synoptic and dynamic climatology. Routledge: Taylor and Francis, London

    Book  Google Scholar 

  • Becker JJ, Sandwell DT, Smith WHF, Braud J, Binder B, Depner J, Fabre D, Factor J, Ingalls S, Kim S-H, Ladner R, Marks K, Nelson S, Pharaoh A, Trimmer R, Von Rosenberg J, Wallace G, Weatherall P (2009) Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar Geod 32(4):355–371

    Article  Google Scholar 

  • Benetazzo A, Fedele F, Carniel S, Ricchi A, Bucchignani E, Sclavo M (2012) Wave climate of the Adriatic Sea: a future scenario simulation. Nat Hazards Earth Syst Sci 12:2065–2076

    Article  Google Scholar 

  • Berrisford P, et al. (2011) The ERA-Interim archive [Version 2.0]. European Centre for Medium Range Weather Forecasts, Shinfield Park. Reading, Berkshire RG2 9AX, UK

  • Booij N, Ris RC, Holthuijsen LH (1999) A third-generation wave model for coastal regions: 1. Model description and validation. J Geophys Res Oceans (1978–2012) 104(C4):7649–7666

    Article  Google Scholar 

  • Carillo A, Sannino G, Artale V, Ruti PM, Calmanti S, Dell’Aquila A (2012) Steric sea level rise over the Mediterranean Sea: present climate and scenario simulations. Clim Dyn 39(9–10):2167–2184

    Article  Google Scholar 

  • Casas-Prat M, Sierra JP (2013) Projected future wave climate in the NW Mediterranean Sea. J Geophys Res Oceans 118:3548–3568

    Article  Google Scholar 

  • Charles E, Idier D, Delecluse P, Déqué M, Cozannet G (2012) Climate change impact on waves in the Bay of Biscay, France. Ocean Dyn 62:831–848. doi:10.1007/s10236-012-0534-8

    Article  Google Scholar 

  • Christopoulos S (1997) Wind-wave modelling aspects within complicate topography. Ann Geophys 15(10):1340–1353

    Article  Google Scholar 

  • Coles S (2001) An introduction to statistical modelling of extreme values. Springer, London, p. 209

    Book  Google Scholar 

  • Conte D, Lionello P (2013) Characteristics of large positive and negative surges in the Mediterranean Sea and their attenuation in future climate scenarios. Glob Planet Change 111:159–173

    Article  Google Scholar 

  • Cox DT, Kobayashi N (2000) Identification of intense, intermittent coherent motions under shoaling and breaking waves. J Geophys Res Oceans (1978–2012) 105(C6):14223–14236

    Article  Google Scholar 

  • De Vries H, Breton M, de Mulder T, Krestenitis Y et al (1995) A comparison of 2D storm surge models applied to three shallow European seas. Environ Softw 10(1):23–42

    Article  Google Scholar 

  • De Winter RC, Sterl A, de Vries JW, Weber SL, Ruessink G (2012) The effect of climate change on extreme waves in front of the Dutch coast. Ocean Dynam 62(8):1139–1152

    Article  Google Scholar 

  • Dee DP et al (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

    Article  Google Scholar 

  • Dykes JD, Wang DW, Book JW (2009) An evaluation of a high-resolution operational wave forecasting system in the Adriatic Sea. J Marine Syst 78:S255–S271

    Article  Google Scholar 

  • Emanuel KA (1991) A scheme for representing cumulus convection in large-scale models. J Atmos Sci 48(21):2313–2335

    Article  Google Scholar 

  • Esteves LS, Williams JJ, Brown JM (2011) Looking for evidence of climate change impacts in the eastern Irish Sea. Nat Hazards Earth Syst Sci 11:1641–1656

    Article  Google Scholar 

  • Fritsch JM, Chappell CF (1980) Numerical prediction of convectively driven mesoscale pressure systems. Part II. Mesoscale model. J Atmos Sci 37:1734–1762

    Article  Google Scholar 

  • Galanis G et al (2012) Wave height characteristics in the Mediterranean Sea by means of numerical modelling, satellite data, statistical and geometrical techniques. Mar Geophys Res 33(1):1–15

    Article  Google Scholar 

  • Gil VE, Genovés A, Picornell MA, Jansà A (2002) Automated database of cyclones from the ECMWF model: preliminary comparison between west and east Mediterranean basins. Proc 4th EGS Plinius Conference, Mallorca, Spain

  • Giorgi F, Anyah RO (2012) The road towards RegCM4. Clim Res 52:3–6

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1999) Introduction to special section: regional climate modelling revisited. J Geophys Res Atm (1984–2012) 104(D6):6335–6352

    Article  Google Scholar 

  • Giorgi F, Mearns LO (1991) Approaches to the simulation of regional climate change: a review. Rev Geophys 29:191–216

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT (1993a) Development of a second generation regional climate model (RegCM2). Part I: boundary layer and radiative transfer processes. Mon Wea Rev 121:2794–2813

    Article  Google Scholar 

  • Giorgi F, Marinucci MR, Bates GT, De Canio G (1993b) Development of a second generation regional climate model (RegCM2). Part II: convective processes and assimilation of lateral boundary conditions. Mon Wea Rev 121:2814–2832

    Article  Google Scholar 

  • Grabemann I, Weisse R (2008) Climate change impact on extreme wave conditions in the North Sea: an ensemble study. Ocean Dynam 58:199–212

    Article  Google Scholar 

  • Grell G (1993) Prognostic evaluation of assumptions used by cumulus parameterizations. Mon Weather Rev 121:764–787

    Article  Google Scholar 

  • Gualdi S et al (2013) The CIRCE simulations: regional climate change projections with realistic representation of the Mediterranean Sea. B Am Meteorol Soc 94(1):65–81

    Article  Google Scholar 

  • Gudmundsson L, Bremnes JB, Haugen JE, Engen Skaugen T (2012) Downscaling RCM precipitation to the station scale using quantile mapping—a comparison of methods (technical note). Hydrol Earth Syst Sci Discuss 9:6185–6201

    Article  Google Scholar 

  • Haerter JO, Hagemann S, Moseley C, Piani C (2011) Climate model bias correction and the role of timescales. Hydrol Earth Syst Sci 15:1065–1079

    Article  Google Scholar 

  • Holthuijsen LH (2007) Waves in oceanic and coastal waters. Cambridge University Press.

  • Holtslag A, de Bruiin E, Pan H-L (1990) A high resolution air mass transformation model for short-range weather forecasting. Mon Weather Rev 118:1561–1575

    Article  Google Scholar 

  • Hosking JRM, Wallis JR (1997) Regional frequency analysis: an approach based on L-moments. Cambridge University Press

  • Hurvich CM, Tsai C (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • IPCC (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate change, Houghton JT et al (eds), Cambridge University Press, New York, USA

  • IPCC (2007) Climate change 2007: the scientific basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate change, Solomon S et al (eds), Cambridge University Press, New York, USA

  • IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate change, Field CB et al (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA

  • IPCC (2013) Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern- mental Panel on Climate Change Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Jaffe B, Sallenger A (1992) The contribution of suspension events to sediment transport in the surf zone. Proc 23rd Inter Coast Eng Conf, Am Soc Civ Eng, 2680–2693

  • Jordà G, Gomis D, Álvarez-Fanjul E, Somot S (2012) Atmospheric contribution to Mediterranean and nearby Atlantic Sea level variability under different climate change scenarios. Glob Planet Change 80–81(0):198–214

    Article  Google Scholar 

  • Kallos G, Nickovic S, Papadopoulos A, Jovic D, Kakaliagou O, Misirlis N, Boukas L, Mimikou N, Sakellaridis G, Papageorgiou J, Anadranistakis E, Manousakis M (1997) The regional weather forecasting system SKIRON: an overview. Proc Interntnl Symposium on Regional Weather Prediction on Parallel Computer Environments, 15–17 October 1997, Athens, Greece, 109–122.

  • Komen GJ et al (1994) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Krestenitis YN, Androulidakis YS, Kontos YN, Georgakopoulos G (2011) Coastal inundation in the north-eastern Mediterranean coastal zone due to storm surge events. J Coast Conserv 15(3):353–368

    Article  Google Scholar 

  • Lionello P, Cogo S, Galati MB, Sanna A (2008) The Mediterranean surface wave climate inferred from future scenario simulations. Glob Planet Change 63:152–162

    Article  Google Scholar 

  • Lionello P et al (2012) Introduction: Mediterranean climate-background information. In: The Climate of the Mediterranean Region. Elsevier

  • Maheras P, Flocas H, Patrikas I, Anagnostopoulou C (2001) A 40-year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. Int J Climatol 21:109–130

    Article  Google Scholar 

  • Makris CV, Androulidakis YS, Krestenitis YN, Kombiadou KD, Baltikas VN (2015) Numerical modelling of storm surges in the Mediterranean Sea under climate change. Proc 36th International Association of Hydraulic Research (IAHR) World Congress 28 June – 3 July, The Hague, The Netherlands

  • Marcos M, Tsimplis MN (2008) Comparison of results of AOGCMs in the Mediterranean Sea during the 21st century. J Geophys Res 113(C12)

  • Marcos M, Tsimplis MN, Shaw AG (2009) Sea level extremes in southern Europe. J Geophys Res Oceans (1978–2012) 114(C1)

  • Marcos M, Jordà G, Gomis D, Pérez B (2011) Changes in storm surges in southern Europe from a regional model under climate change scenarios. Glob Planet Change 77(3–4):116–128

    Article  Google Scholar 

  • Mclnnes KL, Erwin TA, Bethols JM (2011) Global climate model projected changes in 10 m wind speed and direction due to anthropogenic climate change. Atmos Sci Lettt 12:325–333

    Article  Google Scholar 

  • Menéndez M, Méndez FJ, Izaguirre C, Luceño A, Losada IJ (2009) The influence of seasonality on estimating return values of significant wave height. Coast Eng 56:211–219

    Article  Google Scholar 

  • Pal JS, Giorgi F, Bi X, Elguindi N, Solmon F, Rauscher SA, Gao X, Francisco R, Zakey A, Winter J, Ashfaq M, Syed FS, Sloan LC, Bell JL, Diffenbaugh NS, Karmacharya J, Konaré A, Martinez D, da Rocha RP, Steiner AL (2007) Regional climate modelling for the developing world: the ICTP RegCM3 and RegCNET. Bull Amer Meteor Soc 88:1395–1409

    Article  Google Scholar 

  • Papadopoulos A, Katsafados P, Kallos G (2002) Regional weather forecasting for marine application. Glob Atm Ocean Syst 8(2–3):219–237

    Article  Google Scholar 

  • Pawlowicz R, Beardsley B, Lentz S (2002) Classical tidal harmonic analysis including error estimates in MATLAB using T TIDE. Comput Geosci 28:929–937

    Article  Google Scholar 

  • Ris RC, Holthuijsen LH, Booij N (1999) A third-generation wave model for coastal regions: 2. Verification. J Geophys Res 104(C4):7667–7681

    Article  Google Scholar 

  • Roeckner E, et al. (2003) The atmospheric general circulation model ECHAM5, Report No. 349. Max Planck Institute for Meteorology, Hamburg, Germany. ISSN: 0937–1060

  • Rogers WE, Hwang PA, Wang DW (2003) Investigation of wave growth and decay in the SWAN model: three regional-scale applications. J Phys Oceanogr 33(2):366–389

    Article  Google Scholar 

  • Santos JA, Corte-Real J, Ulbrich U, Palutikof J (2007) European winter precipitation extremes and large-scale circulation: a coupled model and its scenarios. Theor Appl Climatol 87:85–102

    Article  Google Scholar 

  • Savvidis YG, Dodou MG, Krestenitis YN, Koutitas CG (2004) Modeling of the upwelling hydrodynamics in the Aegean Sea. Mediterr Mar Sci 5:5–18

    Google Scholar 

  • Schoetter R, Hoffmman P, Rechid D, Schlunzen KH (2012) Evaluation and bias correction of reginal climate model results using model evaluation measures. J Appl Meteor Climatol 51:1670–1684

    Article  Google Scholar 

  • Slangen ABA, Adloff F, Jevrejeva S, Leclercq PW, Marzeion B, Wada Y, Winkelmann R (2016) A review of recent updates of sea-level projections at global and regional scales. Surv Geophys. doi:10.1007/s10712-016-9374-2

    Google Scholar 

  • Smith SD, Banke EG (1975) Variation of the sea surface drag coefficient with wind speed. Q J R Meteorol Soc 101(429):665–673

    Article  Google Scholar 

  • Soomere T, Weisse R, Behrens A (2012) Wave climate in the Arkona Basin, the Baltic Sea. Ocean Sci 8:287–300

    Article  Google Scholar 

  • Soukissian TH (2005) The wave climate of the Aegean Sea: wind waves. In: State of the Hellenic Marine Environment, Papathanassiou E, Zenetos A (eds), Hellenic Centre for Marine Research, pp 65–73

  • Soukissian T et al (2008) A new wind and wave atlas of the Hellenic Seas. Proc 27th Int Conf Offshore Mech Arctic Eng, pp 791–799

  • SWAN (2012) SWAN scientific and technical documentation (SWAN Cycle III, version 40.91) http://swanmodel.sourceforge.net/online_doc/swanuse/swanuse.html

  • Šepić J, Vilibić I, Jordà G, Marcos M (2012) Mediterranean Sea level forced by atmospheric pressure and wind: variability of the present climate and future projections for several period bands. Glob Planet Change 86:20–30

    Google Scholar 

  • The BACC Author Team (2008) Assessment of climate change for the Baltic Sea basin, Regional Climate Studies Series. Springer–Verlag, Berlin–Heidelberg, p. 474

    Book  Google Scholar 

  • Themeßl MJ, Gobiet A, Heinrich G (2012) Empirical statistical downscaling and error correction of regional climate models and its impact on the climate change signal. Clim Chang 112:449–468

    Article  Google Scholar 

  • Tolika K, Anagnostopoulou C, Velikou K, Vagenas C (2015) A comparison of the updated very high resolution model RegCM3_10km with the previous version RegCM3_25km over the complex terrain of Greece: present and future projections. Theor Appl Climatol . doi:10.1007/s00704-015-1583-y1–12

    Google Scholar 

  • Trigo IF, Davies TD, Bigg GR (1999) Objective climatology of cyclones in the Mediterranean region. J Clim 12:1685–1696

    Article  Google Scholar 

  • Tsimplis MN, Blackman D (1997) Extreme sea-level distribution and return periods in the Aegean and Ionian Seas. Estuar Coast Shelf S 44(1):79–89

    Article  Google Scholar 

  • Tsimplis MN, Vlahakis GN (1994) Meteorological forcing and sea level variability in the Aegean Sea. J Geophys Res Oceans 99(C5):9879–9890

    Article  Google Scholar 

  • Tsimplis MN, Marcos M, Somot S (2008) Twenty-first century Mediterranean Sea level rise: steric and atmospheric pressure contributions from a regional model. Glob Planetnn 63(2):105–111

    Article  Google Scholar 

  • Tsimplis MN, Calafat FM, Marcos M, Jordà G, Gomis D, Fenoglio-Marc L, Struglia MV, Josey SA, Chambers DP (2013) The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J Geophys Res (Oceans) 118:944–952

    Article  Google Scholar 

  • Vagenas C, Anagnostopoulou C, Tolika K (2014) Climatic study of the surface wind field and extreme winds over the Greek seas. Proc 12th International Conference on Meteorology, Climatology and Atmospheric Physics (COMECAP)

  • Van den Eynde D, De Sutter R, Haerens P (2012) Evolution of marine storminess in the Belgian part of the North Sea. Nat Hazards Earth Syst Sci 12:305–312

    Article  Google Scholar 

  • Van der Westhuysen AJ, Zijlema M, Battjes JA (2007) Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coast Eng 54(2):151–170

    Article  Google Scholar 

  • Wang XH (2002) Tide-induced sediment resuspension and the bottom boundary layer in an idealized estuary. J Phys Oceanogr 32:3113–3131

    Article  Google Scholar 

  • Wang S, McGrath R, Hanafin JA, Lynch P, Semmler T, Nolan P (2008) The impact of climate change on storm surges over Irish waters. Ocean Model 25:83–94

    Article  Google Scholar 

  • Young IR (1999) Wind Generated Ocean Waves. Elsevier Ocean Engineering Series

  • Zecchetto S, De Biasio F (2007) Sea surface winds over the Mediterranean Basin from satellite data (2000–04): meso- and local-scale features on annual and seasonal time scales. J Appl Meteorol Climatol 46(6):814–827

    Article  Google Scholar 

  • Zervakis V, Georgopoulos D, Drakopoulos PG (2000) The role of the North Aegean in triggering the recent eastern Mediterranean climatic changes. J Geophys Res 105(C11):26103–26116

    Article  Google Scholar 

Download references

Acknowledgments

This research has been co-financed by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF)—Research Funding Program: Thales. Investing in knowledge society through the European Social Fund (Project CCSEAWAVS: Estimating the effects of Climate change on SEA level and WAve climate of the Greek seas, coastal Vulnerability and Safety of coastal and marine structures). The tide-gauge data of sea level variations, used for the validation of the storm surge model, were provided from the HNHS (http://www.hnhs.gr/portal/page/portal/HNHS). Satellite altimetry data were obtained from AVISO (http://www.aviso.oceanobs.com/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christos Makris.

Additional information

Responsible Editor: Sandro Carniel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makris, C., Galiatsatou, P., Tolika, K. et al. Climate change effects on the marine characteristics of the Aegean and Ionian Seas. Ocean Dynamics 66, 1603–1635 (2016). https://doi.org/10.1007/s10236-016-1008-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10236-016-1008-1

Keywords

Navigation