Skip to main content
Log in

Threat level influences the use of venom in a scorpion species, Tityus stigmurus (Scorpiones, Buthidae)

  • Original Paper
  • Published:
acta ethologica Aims and scope Submit manuscript

Abstract

Venom demands high metabolic costs of the organisms that produce it because it is comprised of a complex mixture of various toxins. Due to this high cost, venomous animals modulate the amount or type of venom used depending on factors such as size of prey or intensity of predation threat. This paper shows that Tityus stigmurus, a prevalent scorpion species in the urban environment in the Northeast of Brazil, modulates its venom in response to different levels of stimuli. Sixty animals were collected in Vitória de Santo Antão, Pernambuco. The animals were subjected to either high or low levels of threats. During the tests, the animals were gently touched five times on the mesosoma with forceps at an interval of 5 s (high threat) or 5 min (low threat). The response varied significantly between intensity levels, with the animals exposed to low threat stinging in 70% of the observations and releasing a clear venom. In contrast, individuals subjected to a high level of threat stung in 83% of the observations and released a milky venom. Our results suggest that T. stigmurus reacts differently depending on the stimulus level. When the threat was considered high, the animal reacted more aggressively. Our results support the assumption that milky venom is only used when the animal is highly stressed because this venom represents higher metabolic costs than the production of clear venom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Albuquerque CMR, Santana-Neto PL, Amorim MLP, Pires SCV (2013) Pediatric epidemiological aspects of scorpionism and report on fatal cases from Tityus stigmurus stings (Scorpiones: Buthidae) in state of Pernambuco, Brazil. Rev Soc Bras Med Trop 46:484–489. doi:10.1590/0037-8682-0089-2013

    Article  PubMed  Google Scholar 

  • Armas LF, Abud Antun AJ (2004) Adiciones al género Tityus C. L. Koch, 1836 en República Dominicana, con la descripción de dos especies nuevas (Scorpiones: Buthidae). Rev Ibér Aracnol 10:53–64

    Google Scholar 

  • Ayres M, Ayres Júnior M, Ayres DL, Santos AA (2007) BIOESTAT – Aplicações estatísticas nas áreas das ciências bio-médicas. ONG mamirauá, Belém

    Google Scholar 

  • Brasil (2009) Manual de Controle de Escorpiões. Ministério da Saúde, Secretaria de Vigilância em Saúde, Brasília

    Google Scholar 

  • Brasil (2012) Portal da Saúde. http://portal.saude.gov.br. Accessed 10 Nov 2012

  • Brazil TK, Porto TJ (2010) Os escorpiões. EDUFBA, Bahia

    Google Scholar 

  • Bub K, Bowerman RF (1979) Prey capture by the scorpion Hadrurus arizonensis Ewing. J Arachnol 7:243–253

    Google Scholar 

  • Carmo RFR, Amorim HP, Vasconcelos SD (2013) Scorpion diversity in two types of seasonally dry tropical forest in the semi-arid region of northeastern Brazil. Biota Neotrop 13:340–344. doi:10.1590/S1676-06032013000200037

    Article  Google Scholar 

  • Casper GS (1985) Prey capture and stinging behavior in the emperor scorpion, Pandinus imperator. J Arachnol 13:277–283

    Google Scholar 

  • Chantall-Rocha S, Japyassú HF (2017) Diffuse resistance courtship in the scorpion Rhopalurus rochai (Scorpiones: Buthidae). Behav Process 135:45–55. doi:10.1016/j.beproc.2016.11.017

    Article  Google Scholar 

  • Chippaux JP, Goyffon M (2008) Epidemiology of scorpionism: a global appraisal. Acta Trop 107:71–79. doi:10.1016/j.actatropica.2008.05.021

    Article  PubMed  Google Scholar 

  • Cushing BS, Matherne A (1980) Stinger utilization and predation in the scorpion Paruroctonus boreus. Great Basin Nat 40:193–195

    Google Scholar 

  • de Roodt AR (2014) Comments on environmental and sanitary aspects of the scorpionism by Tityus trivittatus in Buenos Aires City, Argentina. Toxins 6:1434–1452. doi:10.3390/toxins6041434

    Article  PubMed  PubMed Central  Google Scholar 

  • De Souza CAR, Candido DM, Lucas SM, Brescovit AD (2009) On the Tityus stigmurus complex (Scorpiones, Buthidae). Zootaxa 1987:1–38

    Google Scholar 

  • DeSouza AM, Neto PLS, Lira AFA, Albuquerque CMR (2016) Growth and developmental time in the parthenogenetic scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae). Acta Sci Biol Sci 38:85–90. doi:10.4025/actascibiolsci.v38i1.28235

    Article  Google Scholar 

  • Francke OF, Stockwell SA (1987) Scorpions from Costa Rica. Texas Tech Press, Texas

    Google Scholar 

  • Gwee MCE, Nirthanan S, Khoo HE, Gopalakrishnakone P, Kini RM, Cheah LS (2002) Autonomic effects of some scorpion venoms and toxins. Clin Exp Pharmacol Physiol 29:795–801

    Article  CAS  PubMed  Google Scholar 

  • Hayes WK, Herbert SS, Rehling GC, Gennaro J (2002) Factors that in uence venom expenditure in viperids and other snake species during predatory and defensive contexts. In: Schuett GW, Hoggren M, Douglas ME, Greene HW (eds) Biology of the vipers. Eagle Mountain, Utah, pp 207–233

    Google Scholar 

  • Holderied M, Korine C, Moritz T (2011) Hemprich’s long-eared bat (Otonycteris hemprichii) as a predator of scorpions: whispering echolocation, passive gleaning and prey selection. J Comp Physiol A 197:425–433. doi:10.1007/s00359-010-0608-3

    Article  Google Scholar 

  • Inceoglu B, Lango J, Jing J, Chen L, Doymaz F, Pessah IN, Hammock BD (2003) One scorpion, two venoms: prevenom of Parabuthus transvaalicus acts as an alternative type of venom with distinct mechanism of action. Proc Natl Acad Sci U S A 100:922–927. doi:10.1073/pnas.242735499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kats LB, Dill LM (1998) The scent of death: chemosensory assessment of predation risk by prey animals. Écoscience 5:361–394. doi:10.1080/11956860.1998.11682468

    Article  Google Scholar 

  • Lima SL, Dill LM (1990) Behavioral decisions made under the risk of predation: a review and prospectus. Can J Zool 68:619–640. doi:10.1139/z90-092

    Article  Google Scholar 

  • Lira AFA, Albuquerque CMR (2014) Diversity of scorpions (Chelicerata: Arachnida) in the Atlantic Forest in Pernambuco, northeastern Brazil. Check list 10:1331–1335. doi:10.15560/10.6.1331

    Article  Google Scholar 

  • Lira AFA, DeSouza AM (2014) Microhabitat use by scorpion species (Arachnida: Scorpiones) in the montane Atlantic Rain Forest, Brazil. Rev Ibér Aracnol 24:107–108

    Google Scholar 

  • Lira AFA, Souza AM, Silva Filho AA, Albuquerque CMR (2013) Spatio-temporal microhabitat use by two co-occurring species of scorpions in Atlantic rainforest in Brazil. Zoology 116:182–185. doi:10.1016/j.zool.2013.01.002

    Article  PubMed  Google Scholar 

  • Lourenço WR (2002) Scorpions of Brazil. Les Éditions de l’If, Paris

    Google Scholar 

  • Lourenço WR, Leguin E (2008) The true identity of Scorpio (Atreus) obscurus Gervais, 1843 (Scorpiones, Buthidae). Euscorpius 75:1–11

    Google Scholar 

  • Machan L (1968) Spectral sensitivity of scorpion eyes as possible roles of shielding pigment effect. J Exp Biol 49:95–105

    Google Scholar 

  • Marcussi S, Arantes EC, Soares AM (2011) Escorpiões: biologia, envenenamento e mecanismos de ação de suas toxinas, 1st edn. FUNPEC, Ribeirão Preto

    Google Scholar 

  • McCue MD (2006) Cost of producing venom in three North American pitviper species. Copeia 4:818–825. doi:10.1643/0045-8511(2006)6[818:COPVIT]2.0.CO;2

    Article  Google Scholar 

  • Mineo MF, Del Claro K (2006) Mechanoreceptive function of pectines in the Brazilian yellow scorpion Tityus serrulatus: perception of substrate-borne vibrations and prey detection. Acta Ethol 9:79–85. doi:10.1007/s10211-006-0021-7

    Article  Google Scholar 

  • Morgenstern D, King GF (2013) The venom optimization hypothesis revisited. Toxicon 63:120–128. doi:10.1016/j.toxicon.2012.11.022

    Article  CAS  PubMed  Google Scholar 

  • Nelsen DR, Kelln W, Hayes WK (2014) Poke but don’t pinch: risk assessment and venom metering in the western black widow spider, Latrodectus hesperus. Anim Behav 89:107–114. doi:10.1016/j.anbehav.2013.12.019

    Article  Google Scholar 

  • Nisani Z, Hayes WK (2011) Defensive stinging by Parabuthus transvaalicus scorpions: risk assessment and venom metering. Anim Behav 81:627–633. doi:10.1016/j.anbehav.2010.12.010

    Article  Google Scholar 

  • Nisani Z, Dunbar SG, Hayes WK (2007) Cost of venom regeneration in Parabuthus transvaalicus (Arachnida: Buthidae). Comp Biochem Physiol A Mol Integr Physiol 147:509–513. doi:10.1016/j.cbpa.2007.01.027

    Article  PubMed  Google Scholar 

  • Nisani Z, Boskovic DS, Dunbar SG, Kelln W, Hayes WK (2012) Investigating the chemical profile of regenerated scorpion (Parabuthus transvaalicus) venom in relation to metabolic cost and toxicity. Toxicon 60:315–323. doi:10.1016/j.toxicon.2012.04.343

    Article  CAS  PubMed  Google Scholar 

  • Ojanguren Affilastro AA (2005) Estudio monográfico de los escorpiones de la Republica Argentina. Rev Ibér Aracnol 11:75–241

    Google Scholar 

  • Pennington RT, Lavin M, Oliveira-Filho A (2009) Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu Rev Ecol Evol Syst 40:437–457. doi:10.1146/annurev.ecolsys.110308.120327

    Article  Google Scholar 

  • Pimenta AMC, Almeida FDM, de Lima ME, Martin-Eauclaire MF, Bougis PE (2003) Individual variability in Tityus serrulatus (Scorpiones, Buthidae) venom elicited by matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 17:413–418. doi:10.1002/rcm.934

    Article  CAS  PubMed  Google Scholar 

  • Polis GA (1990) The biology of scorpions. Stanford University Press, Stanford

    Google Scholar 

  • Possani LD (1984) Structure of scorpion toxins. In: Tu AT (ed) Handbook of natural toxins, vol 2. Marcel Dekker, New York, pp 513–550

    Google Scholar 

  • Pucca MB, Oliveira FN, Schwartz EF, Arantes EC, Lira-da-Silva RM (2015) Scorpionism and dangerous species of Brazil. Scorpion Venoms 299–324. doi:10.1007/978-94-007-6647-1_20-1

  • Rein JO (1993) Sting use in two species of Parabuthus scorpions (Buthidae). J Arachnol 21:60–63

    Google Scholar 

  • Rein JO (2003) Prey capture behavior in the east African scorpions Parabuthus leiosoma and P. pallidus. Euscorpius 6:1–8

    Google Scholar 

  • Ross LK (2010) Confirmation of the parthenogenesis in the medically significant, synanthropic scorpion Tityus stigmurus (Thorell, 1876) (Scorpiones: Buthidae). Rev Ibér Aracnol 18:115–121

    Google Scholar 

  • Rowe AH, Rowe MP (2006) Risk assessment by grasshopper mice (Onychomys spp.) feeding on neurotoxic prey (Centruroides spp.) Anim Behav 71:725–734. doi:10.1016/j.anbehav.2005.08.003

    Article  Google Scholar 

  • Rowe AH, Rowe MP (2008) Physiological resistance of grasshopper mice (Onychomys spp.) to Arizona bark scorpion (Centruroides exilicauda) venom. Toxicon 52:597–605. doi:10.1016/j.toxicon.2008.07.004

    Article  CAS  PubMed  Google Scholar 

  • Stockmann R, Ythier E (2010) Scorpions of the world. NAP editions, Paris

    Google Scholar 

  • van der Meijden A, Lobo Coelho P, Sousa P, Herrel A (2013) Choose your weapon: defensive behavior is associated with morphology and performance in scorpions. PLoS One 8:e78955. doi:10.1371/journal.pone.0078955

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Meijden A, Coelho P, Rasko M (2015) Variability in venom volume, flow rate and duration in defensive stings of five scorpion species. Toxicon 100:60–66. doi:10.1016/j.toxicon.2015.04.011

    Article  PubMed  Google Scholar 

  • Vasconcelos F, Lanchote VL, Bendhack LM, Giglio JR, Sampaio SV, Arantes EC (2005) Effects of voltage-gated Na+ channel toxins from Tityus serrulatus venom on rat arterial blood pressure and plasma catecholamines. Comp Biochem Physiol C Toxicol Pharmacol 141:85–92. doi:10.1016/j.cca.2005.05.012

    Article  PubMed  Google Scholar 

  • Warburg M (1998) Qualitative and quantitative analysis of intra-and interspecific behavioural patterns among scorpions. J Ethol 16:115–121. doi:10.1007/BF02769290

    Article  Google Scholar 

  • Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40:749–752. doi:10.1016/S0041-0101(01)00277-X

    Article  CAS  PubMed  Google Scholar 

  • Yahel-Niv A, Zlotkin E (1979) Comparative studies on venom obtained from individual scorpions by natural stings. Toxicon 17:435–446. doi:10.1016/0041-0101(79)90277-0

    Article  CAS  PubMed  Google Scholar 

  • Zlotkin E (1969) A simple device for collecting scorpion venom. Toxicon 7:331–332. doi:10.1016/0041-0101(69)90035-X

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for granting a Ph.D. scholarship to A.F.A. Lira and a M.Sc. scholarship to A.B. Santos. We also thank two anonymous reviewers and to editor for valuable suggestions on an earlier draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André F.A. Lira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lira, A.F., Santos, A.B., Silva, N.A. et al. Threat level influences the use of venom in a scorpion species, Tityus stigmurus (Scorpiones, Buthidae). acta ethol 20, 291–295 (2017). https://doi.org/10.1007/s10211-017-0274-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10211-017-0274-3

Keywords

Navigation